Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2009
|
vol. 7
|
issue 1
123-129
EN
A 2-D computer simulation of a coaxial plasma device depending on the conservation equations of electrons, ions and excited atoms together with the Poisson equation for a plasma gun is carried out. Some characteristics of the plasma focus device (PF) such as critical wave numbers a c and voltages U c in the cases of various pressures Pare estimated in order to satisfy the necessary conditions of traveling particle densities (i.e. plasma patterns) via a linear analysis. Oscillatory solutions are characterized by a nonzero imaginary part of the growth rate $$ \Im $$(σ) for all cases. The model also predicts the minimal voltage ranges of the system for certain pressure intervals.
Open Physics
|
2008
|
vol. 6
|
issue 4
884-890
EN
In this paper, using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Klein-Gordon equation with the vector and scalar Hulthén potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of t-waves scattering states are presented. The normalized wave functions expressed in terms of hypergeometric functions of scattering states on the “k/2π scale” and the calculation formula of phase shifts are given. The physical meaning of the approximate analytical solution is discussed.
3
76%
EN
The Green function for a Dirac particle subject to a plane wave field is constructed according to the path integral approach and the Barut’s electron model. Then it is exactly determined after having fixed a matrix U chosen so that the equations of motion are those of a free particle, and by using the properties of the plane wave and also with some shifts.
Open Physics
|
2008
|
vol. 6
|
issue 4
879-883
EN
We study the application of the asymptotic iteration method to the Khare-Mandal potential and its PT-symmetric partner. The eigenvalues and eigenfunctions for both potentials are obtained analytically. We have shown that although the quasi-exactly solvable energy eigenvalues of the Khare-Mandal potential are found to be in complex conjugate pairs for certain values of potential parameters, its PT-symmetric partner exhibits real energy eigenvalues in all cases.
Open Physics
|
2010
|
vol. 8
|
issue 4
562-573
EN
The one-dimensional path decomposition expression for the step potential and mass is formulated. The propagator is analytically determined and the limiting case m 1; m 2 → m is exactly obtained.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.