Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Polyphosphazenes represent a unique class of polymers with a backbone composed of alternating phosphorous and nitrogen atoms. The thermal behaviour and decomposition of a variety of polyphosphazenes depends on the type of side groups present. Especially those that bear aryloxy side groups, possess a high temperature stability as well as excellent flame resistance. Pyrolysis-capillary gas chromatography has been used in a study of three polyphosphazene samples for thermal stability characterisation. Degradation products were detected with three single detectors for flame ionisation (FID), nitrogen-phosphorous sensitivity (NPD) and mass spectrometry (MSD) at different pyrolysis temperatures ranging from 300°C up to 800°C. The NPD responses for phosphorous or nitrogen fragments of polyphosphazenes have been used for the construction of degradation product schemes and the examination of the thermal stability of the polyphosphazene’s backbone. Partial identification of the degradation products present in the gaseous phase was achieved by MSD. The polyphosphazenes thermal degradation conversion rates were at a maximum at 450–500°C. At various pyrolysis temperatures, the calculated N/P peak area ratio is a function of the degree of polyphosphazene-N=P-chain degradation, and reflective of the nitrogen - phosphorous detector sensitivity. NPD proved to be suitable tool for characterization of polyphospazene thermal stability.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.