Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Study aim: the purpose of the study was to compare foot shapes in early school-age boys and girls. Material and methods: the study included 90 boys and 98 girls aged seven to nine years old. The shape of the foot arch was examined using a podoscope. The longitudinal arch was assessed according to the Clarke angle value on the basis of Kasperczyk’s classification. The transverse arch was assessed according to the Wejsflog index. An analysis of variance, a post-hoc LSD test and a chi-square test were performed. Results: normal transverse arches in both feet appeared in 84% of the examined children. An analysis of the average value of the Wejsflog index showed that it is similar and within limits in all of the test groups indiscriminately when it comes to gender and age. Normally, longitudinal arches in both feet occurr in 44% of children. The average value of Clarke’s index in a test group of school-age girls was within normal range while a functionally flattened foot appeared in the case of seven and eight-year-old boys. Conclusions: the outcomes of the present study conducted on a randomly chosen group of developing boys and girls show that changes in foot structure are mostly symmetrical in nature (almost 90%), meaning that if the left foot is normal, the right one is normal, too. Gender had no effect on the foot build or arch type in either foot. The right and left feet showed symmetrical structure in the majority of the children.
EN
The purpose of this study was to quantify and compare asymmetry of stride length during 200 m sprint in different levels of performance. Six sprinters from national and regional levels participated in the study. They were assigned to 3 groups: school-boys (novice sprinters) junior (intermediate) and senior (advance - national and regional level) category. This study investigated selected kinematic parameters with special focus on stride length. The resulting values were measurements of each stride length (rounded-off to nearest full centimeter) during a 200 m sprint, using a manual stride measurement method. The findings indicate that the asymmetry of stride length exists in all categories, and the impact on decreasing velocities of the youngest sprinters (school-boys) are significantly associated with shorter strides, whereas cadence has little change. However, when a statistical adjustment was made for each group of runners it was found that more advanced runners did not have a significantly higher level of asymmetry with stride length at any given velocity.
3
100%
EN
The goal of this study was to examine the relationship between kinematics, motor abilities, anthropometric characteristics, and the initial (10 m) and secondary (30 m) acceleration phases of the 100 m sprint among athletes of different sprinting performances. Eleven competitive male sprinters (10.96 s ± 0.36 for 100 with 10.50 s fastest time) and 11 active students (12.20 s ± 0.39 for 100 m with 11.80 s fastest time) volunteered to participate in this study. Sprinting performance (10 m, 30 m, and 100 m from the block start), strength (back squat, back extension), and jumping ability (standing long jump, standing five-jumps, and standing ten-jumps) were tested. An independent t-test for establishing differences between two groups of athletes was used. The Spearman ranking correlation coefficient was computed to verify the association between variables. Additionally, the Ward method of hierarchical cluster analysis was applied. The recorded times of the 10 and 30 m indicated that the strongest correlations were found between a 1- repetition maximum back squat, a standing long jump, standing five jumps, standing ten jumps (r = 0.66, r = 0.72, r = 0.66, and r = 0.72), and speed in the 10 m sprint in competitive athletes. A strong correlation was also found between a 1-repetition maximum back squat and a standing long jump, standing five jumps, and standing ten jumps (r = 0.88, r = 0.87 and r = 0.85), but again only for sprinters. The most important factor for differences in maximum speed development during both the initial and secondary acceleration phase among the two sub-groups was the stride frequency (p<0.01).
EN
Introduction. Distance running performance is a simple function of developing high speeds and maintaining this speed as long as possible. Thus a correct running technique becomes an important component of performance. Technique is effective if the competitor can reach a better performance result with the same or lower energy consumption. The purpose of this investigation was to examine a six weeks application explosive type strength training on lower extremities power and maximum speed performance improvement in order to facilitate running technique in sub-elite male middle-distance runner. Material and methods. A sub-elite runner performed twice a week special exercises and running drills. He completed a pre and post-training jumping (SJ, CMJ, standing long jump, standing five jump) and speed (20 m from standing and flying start) field tests. For kinematical analysis, a video (SIMI Motion System) of a 10 m sprint from a 20 m flying start was collected. Results. Improvement occurred in all measurements but strong changes were evident in the 10 m from 20 flying start and in stride frequency from 3.90 to 4.01 Hz, due to decreasing of ground contact time from 160 to 156 ms. No strong evidence in the participant's running technique changes. Conclusion. This proved that six weeks of dynamic type strength program seems to improve neuromuscular characteristics of running speed and explosive power and no changes in running technique.
EN
The purpose of present review article is to gather the most important findings in the field of speed development including biomechanical, motor and neuro-muscular factors. Maximum speed is a complex motor ability, which manifests itself in real sports situations and is an important factor in various sports disciplines. Efficiency of maximum running is defined with frequency and the length of stride. Both variables are mutually dependant; they also depend on the processes of central regulation of motor stereotype. From the biomechanical point of view, a running stride as a basic structural unit depends on eccentric-concentric muscular cycle of take-off action. Utilisation of elastic strength in muscular-tendon complex and pre-activation of the gastrocnemius muscle is highly important in this element. Maximum running is very limited hereditary motor ability with characteristic of reduced possibility for controlling movement. Cerebellum, co-activation of muscles in kinetic chain and the frequency of activation of motor units play important roles in controlling the activation of agonists and antagonists. The prime goal of training is to create an optimal model of motor stereotype in the zone of maximum speed. Such process has to be long term and methodical.
EN
The study assesses the effects of a six-week plyometric training program (PT) on muscle stiffness in the dominant and non-dominant leg in male collegiate volleyball players. The study group comprised 16 volleyball players who had played collegiate volleyball for at least four years. For six consecutive weeks, twice a week, the players undertook a plyometric program of 60-min training sessions, each preceded with a specialist warm-up. The analysis of the anterior muscles of the right and the left lower leg revealed a significant increase in stiffness in the muscles of the right leg and the left leg. No significant differences were found between the anterior muscles of the left lower leg and the right lower leg in particular weeks of the training program. The analysis of the posterior lower leg muscles revealed no significant differences, either in the consecutive weekly training microcycles or between the left leg and the right leg. The measurement of muscle tone and biomechanical properties of muscles can be used as a fast and direct assessment of plyometric training-related muscle fatigue. A similar level of muscle stiffness in both lower legs (symmetry) is a reflection of the appropriate selection of plyometric training loads.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.