Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The effect of high energy electron beam irradiation on the crystalline structure and mechanical properties of the surface layer of grey cast iron has been investigated by light and electron microscopy, X-ray analysis as well as microhardness measurements. The electron irradiation leads to the formation of modulated structure of the surface layer, which provides the combination of the high hardness level and the high wear resistance. These properties are caused by the high density of the structural defects in austenite phase, the formation of the high number of dispersed carbides and the existence of a set of phases from ledeburite till sorbite with high level of hardness.
EN
Materials of the Y-Ba-Cu-O (melt-textured YBa_{2}Cu_{3}O_{7-δ}-based materials or MT-YBCO) and Mg-B-O (MgB_{2}-based materials) systems with high superconducting performance, which can be attained due to the formation of regularly distributed nanostructural defects and inhomogeneities in their structure can be effectively used in cryogenic technique, in particular in fault current limiters and electrical machines (electromotors, generators, pumps for liquid gases, etc.). The developed processes of high-temperature (900-800°C) oxygenation under elevated pressure (16 MPa) of MT-YBCO and high-pressure (2 GPa) synthesis of MgB_{2}-based materials allowed us to attain high superconductive (critical current densities, upper critical fields, fields of irreversibility, trapped magnetic fields) and mechanical (hardness, fracture toughness, Young modulus) characteristics. It has been shown that the effect of materials properties improvement in the case of MT-YBCO was attained due to the formation of high twin density (20-22 μm^{-1}), prevention of macrocracking and reduction (by a factor of 4.5) of microcrack density, and in the case of MgB_{2}-based materials due to the formation of oxygen-enriched as compared to the matrix phase fine-dispersed Mg-B-O inhomogeneities as well as inclusions of higher borides with near-MgB_{12} stoichiometry in the Mg-B-O matrix (with 15-37 nm average grain sizes). The possibility is shown to obtain the rather high T_{c} (37 K) and critical current densities in materials with MgB_{12} matrix (with 95% of shielding fraction as calculated from the resistant curve).
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.