Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Indirect RKKY-Type Interaction by Direct Oxygen Hopping

100%
EN
The three-band Emery model, describing the holes in the CuO_{2} planes of the high-temperature superconducting oxides, is considered. The model includes the direct oxygen-oxygen hopping integral t_{pp}. The exact Bogolyubov transformation is used to exclude one oxygen band and obtain a two-dimensional Anderson model. Afterward, the effective Hamiltonian is obtained by eliminating the second oxygen band with the use of two approximate canonical transformations. The effective Hamiltonian describes the spins residing on the copper sites and interacting through an indirect interaction J_{SX}(R), where R is the distance between two copper ions. J_{SX}(R) depends on the doping rate δ and is a decaying function of R. Numerical results for J_{SX}(R) are given for different doping rates δ for the case of parabolic bands. The obtained interaction J_{SX}(R), when added to the original antiferromagnetic interaction (present in oxides at δ = 0), might lead to a frustration of the long-range antiferromagnetic ordering upon doping.
2
Content available remote

Crossover from BCS to Bose-Einstein in Hubbard Model

100%
EN
We generalize the standard attractive Hubbard, having an on-site pair creation operator Q_{i} = a_{i↑}a_{i↓}, to one with n components Q_{iα} = a_{iα↑}a_{iα↓}, α=1,2,...,n. In the limit n → ∞ we obtain the Ginzburg-Landau functional. On this basis we explore the crossover from weak (BCS) to strong coupling (Bose-Einstein condensation) superconductivity. The associated self-consistent equations for the Ginzburg-Landau parameters are similar to those of the T-matrix approach. The evolution of the band structure with increasing interaction strength is studied and correlated with the behavior of the pair propagator and the transition temperature. We find that the pairing interaction creates a new band which moves downwards in energy as the interaction strength increases and separates into a lower Hubbard band when the interaction strength becomes comparable to the band width. In the strong coupling regime, a third band with small spectral weight is also found in between the lower and upper Hubbard bands.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.