Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this work, illite-based ceramic body with power plant fly ash addition (60 wt.% of illite, 30 wt.% of fly ash and 10 wt.% of illite fired at 1100°C) was investigated by the thermal analysis techniques (differential thermal analysis, thermodilatometry and thermogravimetry) and the acoustic emission technique. The green body was heated up to 1100°C at three different rates 2.5, 5, 10 K/min. The most intense acoustic emission was recorded at the highest rate 10 K/min. Mutual correlations between thermal analyses and acoustic emission data were also examined. The first acoustic emission response appears at 430°C, corresponding to a small endotherm on the DTA curve, where the thermal decomposition of mineral portlandite takes place. In the temperature range from 600 to 900°C, high acoustic emission activity correlates with dehydroxylation and expansion of the sample. At temperatures higher than 800°C, the source of acoustic emission signals is the thermal decomposition of calcite. The amorphous phase created from illite at 920°C becomes pyroplastic, therefore it is not documented by the acoustic emission technique.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.