Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The removal of a non-steroidal anti-inflammatory drug (NSAID) diclofenac sodium salt (DCF, C14H10Cl2NNaO2) from water in two hybrid systems coupling photolysis or photocatalysis with direct contact membrane distillation (DCMD) is presented. A UV-C germicidal lamp was used as a source of irradiation. The initial concentration of DCF was in the range of 0.005-0.15 mmol/dm3 and the TiO2 Aeroxide® P25 loading (hybrid photocatalysis-DCMD) ranged from 0.05 to 0.4 g/dm3. Regardless of the applied hybrid system and the initial concentration of DCF, the model drug was completely decomposed within 4h of irradiation or less. Mineralization was less efficient than photodecomposition. In case of the hybrid photolysis-DCMD process the efficiency of TOC degradation after 5h of irradiation ranged from 27.3-48.7% depending on the DCF initial concentration. The addition of TiO2 allowed to improve the efficiency of TOC removal. The highest degradation rate was obtained at 0.3 gTiO2/dm3. During the process conducted with the lowest DCF initial concentrations (0.005-0.025 mmol/dm3) a complete mineralization was obtained. However, when higher initial amounts of DCF were used (0.05-0.15 mmol/dm3), the efficiency of TOC degradation was in the range of 82.5-85%. The quality of distillate was high regardless of the system: DCF was not detected, TOC concentration did not exceeded 0.7 mg/dm3 (1.9 mg/dm3 in permeate) and conductivity was lower than 1.6 μS/cm.
EN
A method for obtaining carbonaceous adsorbents from pine cones by chemical activation with NaOH is described. Activated carbons were obtained by two methods of activation (physical mixing and impregnation) and two variants of thermal treatment. It has been shown that pine cones can be successfully used as cheap precursor of carbonaceous adsorbents of well-developed surface area, large pore volume and good sorption properties. All activated carbon samples obtained show strongly microporous structure and surface of acidic character. The best physicochemical properties and greatest sorption capacity towards iodine were found for the carbon samples obtained by physical mixing of the precursor with the activating agent and then subjected to thermal activation at 600°C.
EN
Porous carbons loaded with magnesium oxide were prepared through one-step process. Poly(ethylene terephthalate) and natural magnesite were used as carbon source and MgO precursor, respectively. An impact of a temperature and relative amounts of raw components used for preparations on the textural parameters of resulting hybrid materials is presented and discussed. As found, pore structure parameters tend to decrease along with MgO loading and temperature used during preparation process. Micropore area is the parameter being reduced primarily.
EN
Porous carbons obtained from poly(ethylene terephtalate) contained in a mixture with either MgCO3 or Mg(OH)2 were examined as adsorbents for removal of humic acid from water. Adsorption of the model contaminants is discussed in relation to the textural parameters of the obtained carbon materials. Pore structure parameters of the carbonaceous materials were strongly influenced by preparation conditions including temperature and relative amounts of the inorganics used during preparations as template. Porous carbons prepared revealed a potential to purify water from the model contaminant of high molecular weight. The results presented confirmed a key role of mesoporosity in the adsorption of humic acid. Fluorescence spectroscopy was confirmed to be an useful method to evaluate concentration of humic acid in water.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.