Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The electrochemical activity towards hydrogen evolution reaction (HER) was studied on commercially available (Toho-Tenax) and Ru-modified nickel-coated carbon fibre (NiCCF) materials. Quality and extent of Ru electrodeposition on NiCCF tows were examined by means of scanning electron microscopy (SEM). Kinetics of the hydrogen evolution reaction were investigated at room temperature, as well as over the temperature range: 20-50°C in 0.1 M NaOH solution for the cathodic overpotential range: -100 to -300 mV vs. RHE. Corresponding values of charge-transfer resistance, exchange current-density for the HER and other electrochemical parameters for the examined fibre tow composites were recorded.
EN
In this study, palladium-modified nickel foam substrate was applied to examine ethanol oxidation reaction (EOR) in 0.1 M NaOH supporting solution. An EOR catalyst was prepared by physical vapour deposition (PVD) of palladium onto Ni foam material. Temperature-dependent kinetics of the EOR were studied over the temperature range: 20-60°C by means of a.c. impedance spectroscopy and cyclic voltammetry techniques. Deposition of a noble metal additive was clearly exposed through scanning electron microscopy: SEM/EDX-supported analysis. Most importantly, this work investigated the effect of pre-deposited fullerene on nickel foam, on the catalytic (EOR) properties of such-produced Ni foam/Pd composite material.
EN
This work reports on kinetics of phenol electrooxidation reaction (PhER), examined at polycrystalline Pt electrode in 0.5 M H2SO4 and 0.1 M NaOH supporting solutions. Important aspects of PhER kinetics were analysed based on potential-dependent, a.c. impedance-derived values of charge-transfer resistance and capacitance parameters. Special attention was also given to the influence of supporting electrolyte ions on the process of phenol oxidation (pH dependence of the PhER), in relation to an important role of anion adsorption on the Pt catalyst surface.
4
81%
EN
Electrocoagulation makes an alternative method to chemical coagulation. This paper presents the results obtained during the electrocoagulation of the model wastewater using aluminum electrodes. The wastewater was treated by means of chronopotentiometric electrocoagulation process in a static system, at the constant current I = 0.3 A; therefore higher doses of electrocoagulant required longer electrocoagulation time. Changes in zeta potential, pH, turbidity, chemical oxygen demand (COD), suspended solids and total phosphorus concentrations in the treated wastewater were determined. A new method for determining the optimal dosage of the aluminum electrocoagulant was proposed through application of the third degree polynomial function rather than the parabolic equation. An increase in the electrocoagulant dose raised the share of sweep fl occulation in the studied treatment process, resulting in the effective removal over 90% of phosphorus compounds from the system.
EN
This paper discusses the results of laboratory analyses of the coagulation and flocculation of model wastewater. The investigated wastewater was susceptible to treatment by chemical coagulation. The effectiveness of two commercial coagulants, PAC produced at the DEMPOL-ECO Chemical Plant and PIX manufactured by KEMIPOL, was compared. A mathematical model relying on a second-degree polynomial was used to describe and analyze experimental data. In each case, the parabola minimum point was a precisely determined coagulant dose, regarded as the optimal dose. The application of a coagulant dose higher than the optimal dose reduced the effectiveness of wastewater treatment by coagulation. A detailed analysis of turbidity, suspended solids, total phosphorus and pollutant removal measured by the COD test revealed that PAC was a more effective and a more efficient coagulant than PIX. The risk of coagulant overdosing was greater with the use of PAC than PIX.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.