Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We have studied the effect of the ratio of different rare-earth element on the superconducting properties and phase formation of (Nd0.33Eu0.08Gd0.58)Ba2Cu3Oz ceramic. Bulk NEG samples were prepared using the solid-state reaction process. The superconducting transition for Nd0.33Eu0.08Gd0.58Ba2Cu3Oz is T c ≈90 K and the value of the critical current density (J c) is 13.9 A/cm2 at 77 K under zero magnetic fields. This value is twice as high when compared with the (J c) value of YBCO systems (J c = 7.31 A/cm2). The obtained bulk sample was used for the production of superconducting Ag-sheathed tapes by OPIT method including hot rolling. The critical current density of the obtained tape (337 A/cm2) is one order higher than the one of the bulk sample.
EN
Aqueous sol-gel chemistry routes - based on ammonium hydrogen phosphate as the phosphorus precursor, calcium acetate monohydrate as the source of calcium ions, and 1,2-diaminocyclohexanetetraacetic acid monohydrate (DCTA) as the complexing agent - have been used to prepare calcium hydroxyapatite (HA). The sol-gel process was performed in aqueous solution at different pH values followed by calcination of the dry precursor gels for 5 h at 1000°C. Phase transformations, composition, and structural changes in the polycrystalline samples were studied by thermoanalytical methods (TG/DTA), infrared spectroscopy (IR), X-ray powder diffraction analysis (XRD), and scanning electron microscopy (SEM). It was shown that pH adjustment has significant impact on the apatite formation process and on the morphology and phase purity of the ceramic samples.
EN
Sintering effects in YBa2Cu3Oz samples with quasi-equal rare earth substitution have been investigated. It has been shown that the Y-123 type compound can be formed when gadolinium is partially substituted (in this case 50% atomic substitution) for yttrium. The superconducting compound was obtained by the optimized ceramic method, including solid-state reaction, melting and sintering, controlled by X-ray diffraction. The microstructure was investigated by SEM and energy dispersive X-ray analyses. An AC susceptibility measurement has shown that T c =93 K. Temperature-dependece of the thermal conductivity (4.5–300 K) of the polycrystalline Y0.5Gd0.5Ba2Cu3O6.94 sample was also measured.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.