Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
|
2003
|
vol. 50
|
issue 1
61-68
EN
The endothelium plays a critical role in maintaining vascular tone by releasing nitric oxide (NO). Endothelium derived NO diffuses to smooth muscles, triggering their relaxation. The dynamic of NO production is a determining factor in signal transduction. The present studies were designed to elucidate dynamics of NO release from normal and dysfunctional endothelium. The nanosensors (diameter 100-300 nm) exhibiting a response time better than 100 μs and detection limit of 1.0×10-9 mol L-1 were used for in vitro monitoring of NO release from single endothelial cells from the iliac artery of normotensive (WKY) rats, hypertensive (SHR) rats, and normal and cholesterolemic rabbits. Also, the dynamics and distribution of NO in left ventricular wall of rabbit heart were measured. The rate of NO release was much higher (1200 ± 50 nmol L-1 s-1) for WKY than for SHR (460 ± 10 nmol L-1 s-1). Also, the peak NO concentration was about three times higher for WKY than SHR. Similar decrease in the dynamics of NO release was observed for cholesterolemic rabbits. The dynamics of NO release changed dramatically along the wall of rabbit aorta, being highest (0.86 ± 0.12 μmol L-1) for the ascending aorta, and lowest for the iliac aorta (0.48 ± 0.15 μmol L-1). The distribution of NO in the left ventricular wall of rabbit heart was not uniform and varied from 1.23 ± 0.20 μmol L-1 (center) to 0.90 ± 0.15 μmol L-1 (apex). Both, the maximal concentration and the dynamics of NO release can be useful diagnostic tools in estimating the level of endothelial dysfunction and cardiovascular system efficiency.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.