Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Structural stability of TiO and TiN under high pressure

100%
Open Physics
|
2008
|
vol. 6
|
issue 2
277-282
EN
The high pressure phase transition and elastic behavior of Transition Metal Compounds (TiO and TiN) which crystallize in NaCl-structure have been investigated using the three body potential model (TBPM) approach. These interactions arise due to the electron-shell deformation of the overlapping ions in crystals. The TBP model consists of a long range Coulomb, three body interactions, and the short-range overlap repulsive forces operative up to the second neighboring ions. The authors of this paper estimated the values of the phase transition pressures, associated volume collapses, and elastic constants, all of which were found to be closer to available experimental data than other calculations. Thus, the TBPM approach promises to predict the phase transition pressure and pressure variations of elastic constants of Transition Metal compounds.
EN
Spontaneous instabilities of nanoparticles are known to be influenced by the temperature, and strongly depend on the particle size. However, it is not clear what is the role of the surrounding material that is in contact with the particle. Here we report on the difference between spontaneous rotations of Bi nanoparticles embedded in amorphous SiO and those embedded in liquid Ga. The phenomenon was studied quantitatively by time resolved transmission electron microscopy using Fourier Transform analysis of highresolution electron microscopy images. While rotations of Bi nanoparticles embedded in amorphous SiO occur by all angles, the rotations of Bi nanoparticles embedded in liquid Ga occur by discrete angles. Our results point quantitatively, for the first time, to the role and importance of the contacting surrounding surface during the rotation of nanoparticles.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.