Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Novel Calix[4]arene Netwok (NCN) resin has been synthesized using Amberlite XAD-2 as the starting material. Hydroxyl groups have been introduced onto the para position of alkylated phenyl ring of Amberlite XAD-2 followed by the condensation to NCN by reacting it with formaldehyde. The NCN resin has been used for the remediation of Cr(VI) contaminated water using factorial design approach. A face-centered Draper-Lin composite design predicted ~100% removal effi ciency at optimum variables (the initial concentration of Cr(VI) ion 10 mg/l sorbent dose 200 mg, agitation time 136 min and pH 2). The accuracy and the fi tting of the model were evaluated by ANOVA and R2 (0.9992) values. The 99.5% removal effi ciency has been achieved experimentally at the optimum values of the variables. The Langmuir and D-R isotherm models were applicable to the sorption data with the value of RL and the sorption free energy 0.0057-0.1 and 7.93 kJ/mol respectively, suggesting favorable and physical/ion-exchange nature of the sorption. The calculated sorption capacity was 176.1±2.4 mg/g. The recycling studies of NCN resin showed that the multiple use of resin is feasible. Effect of concomitants has also been studies and proposed method was applied successfully for removal (98.7%) of Cr (VI) from electroplating wastewater.
EN
An attempt has been made to recycle Styrofoam waste to a novel functional polymer, Phenyl thiosemicarbazone surface (PTS). Polystyrene (PS) obtained from Styrofoam waste was acetylated and then condensed to PTS by reacting it with 4-Phenyl-3-thiosemicarbazide ligand and characterized by FT-IR spectroscopy and elemental analysis. Synthesized PTS was applied successfully for the treatment of lead contaminated water by batch extraction method. Sorption variables were optimized (pH 8, adsorbent dose 53mg, initial Pb(II) ion concentration 10mgl-1 and agitation time 90min) by factorial design approach. Lead uptake by PTS was found much sensitive to the pH of Pb(II) ion solution. The maximum removal (99.61%) of Pb(II) ions was achieved at optimum conditions. The Langmuir and D-R isotherm study suggested the monolayer, favorable (RL=0.0001-0.01) and chemisorption (E=20.41±0.12kJmol-1) nature of the adsorption process. The sorption capacity of PTS was found to be 45.25±0.69mgg-1. The FT-IR spectroscopy study showed the involvement of nitrogen and sulphur of thiosemicarbazone moiety of PTS for the uptake of Pb(II) ions by five membered chelate formation.
EN
In the present study, jamun seed waste has been explored for the removal of Pb(II) ions from aqueous solution. The multi-variant sorption optimization was achieved by the factorial design approach. 99.91% of Pb(II) ions was removed from aqueous solution. The results predicted by the model were in good agreement with the experimental results (the values of R2 and R2adj. were found to be 99.89% and 99.95%, respectively). Langmuir and D-R isotherm studies were carried out to find adsorbent’s capacities (183.9 ± 0.31 mg/g and 184.5 ± 0.16 mg/g respectively), sorption free energy 13.17 ± 0.16 and RL values in the range of 0.05-0.77, suggested the favorable chemical and/or ion exchange nature of the sorption process. The FT-IR study was carried out for unloaded and Pb(II) ions loaded jamun seed, indicated, Pb(II) ions associated with nitrogen and oxygen of jamun seed containing moieties during the adsorption process. The proposed method was successfully validated and applied for the treatment of Pb(II) ions contaminating drinking water.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.