Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Heavy metal and dust pollution absorption through lichen thallus occurs on the surface, that is by means of ectohydric sorption . Protective mechanisms, among which there is heterometric (layered) structure of lichens, play a significant role in limiting this process. The aim of this research was to determine the way the pollution penetrates inside lichen thallus and to determine the role of dermal layer in stopping heavy metals on the thallus surface . Lichen thalli exposed to transport pollution near Krakow-Katowice motorway for half a year were analyzed. With the use of Electron Scanning Microscope Quanta 250 and microanalyser EDEX accumulation of pollutions depositing on the outer lichen surface, on the surface of algal cells, in subcortex layer, on the fungal hyphae surface and intercellular spaces of crack bottom of pseudocyphella were determined. The results of the analysis show an important role of pseudocyphella in the process of pollution penetration inside lichen thallus and protective effectiveness of the upper cortex whose tight structure and thickness of chitinous cell walls of mycelium, relatively thicker in comparison to parenchyma layer, influence its dermal properties. Heavy metal accumulation (Al, Fe, Cu) on the thallus surface, on algal cell surface, on the fungal hyphae surface and deep layers of pseudocyphella cracks is presented by the order: crack > alga > fungi > subcortex layer > thallus surface.
PL
Wch³anianie metali ciê¿kich i zanieczyszczeñ py³owych przez plechy porostowe odbywa siê na drodze powierzchniowej, tzw. ektohydrycznej sorpcji. Istotn¹ rolê w ograniczeniu tego procesu odgrywaj¹ naturalne mechanizmy ochronne, m.in. heteromeryczna (warstwowa) budowa porostów. Celem badañ by³o okreœlenie dróg przenikania zanieczyszczeñ w g³¹b plechy porostów oraz okreœlenie roli warstwy dermalnej w zatrzymywaniu metali ciê¿kich na powierzchni plechy. Analizie poddano plechy porostowe, które przez okres pó³ roku eksponowano na zanieczyszczenia komunikacyjne przy autostradzie Kraków - Katowice. Przy wykorzystaniu skaningowego mikroskopu elektronowego Quanta 250 oraz mikroanalizatora EDAX okreœlano kumulacjê zanieczyszczeñ osadzaj¹cych siê na zewnêtrznej powierzchni plechy, na powierzchni komórek glonowych, w warstwie podkorowej, na powierzchni strzêpków grzybowych i w przestrzeniach miêdzykomórkowych dna szczeliny pseudocyfeli. Wyniki analiz wskazuj¹ na istotn¹ rolê szczelin pseudocyfeli w procesie przenikania zanieczyszczeñ w g³¹b plechy porostu oraz skutecznoœæ ochronn¹ warstwy kory górnej, której zwarta struktura oraz gruboœæ chitynowych œcian komórek grzybni jest relatywnie grubsza w stosunku do grzybni warstwy mi¹¿szowej, co decyduje o jej w³aœciwoœciach dermalnych. Kumulacjê metali ciê¿kich (Al, Fe, Cu) na powierzchni plechy, powierzchni komórek glonowych, w warstwie podkorowej, na powierzchni strzêpków grzybowych i w przestrzeniach miêdzykomórkowych dna szczeliny pseudocyfeli przedstawia uk³ad szczelina > glon > grzyb > warstwa podkorowa > powierzchnia plechy.
EN
Apart from widely known anthropogenic pollutants as SO2, NOx, CO2, CO, there are another dangerous substances emitted to the air named polycyclic aromatic hydrocarbons (PAH). In the air they occur in a form of vapours and aerosols deposited on dust particles of 10 μm (PM 10) and 2.5 μm (PM 2.5) in diameter. In cities, the air polluted by gases and atmospheric particulate was analysed using special automatic or semi-automatic equipment or analytic procedures. That is why a powerful development of bioanalytical techniques based on using organisms as bioindicators is observed in recent years. The lichens are the most frequently used organisms in bioindication. The purpose of this research is to evaluate air pollution by PAHs in urban agglomeration with the use of Hypogymnia physodes (L.)Nyl. The research was performed in two hundred thousand occupants in south-east Poland in 2004-2007. The lichens placed on tree branches of 30 cm on 4 crossroads, and the 3 branches were put in each research point. Before starting the exposition, the “O” sample had been collected that had been stored in a closed container before chemical analysis. The exposition period lasted for 3 months. Then PAHs were determined in collected lichens. The analysis was performed with high performance liquid chromatography (HPLC), LiChrosper (TM) column 100 RP - 18, UV detector; λ = 254 nm. The concentration was expressed in mg/kg of dry mass that is after deducting PAH value determined in “O” sample. The analysis of obtained results showed diverse concentration of the pollution in the analysed crossroads depending on the road traffic density and season. PAH concentrations were determined from 0.61 mg·kg-1 d.m. in the 1st quarter of 2004 to 2.56 mg·kg-1 d.m. in the 1st quarter of 2006, and from 0.48 mg·kg-1 d.m. in the 4th quarter of 2004 to 2.22 mg·kg-1 d.m. in the 4th quarter of 2006. Meteorological conditions influence the concentration of PAHs in lichens. The atmospheric precipitation contributed to the decrease of PAHs concentration in the air by scavenging the pollution with atmospheric particulate. The regression line amounted to y = 1.91759 - 0.00674 · x, at the confidence interval equal to p = 0.0308. A relation between the PAH concentration and air relative humidity turned out to be the most essential correlation. This relation indicates that the concentration of PAHs in the lichens increases with an increase of humidity. The line regression amounted to y = -1.04196 + 0.02897 · x, at the confidence interval equal to p = 0.0505.
PL
Obecnie obok powszechnie znanych zanieczyszczeń gazowych pochodzenia antropogennego, takich jak SO2, NOx, CO2, CO, do groźnych substancji dostających się do powietrza zalicza się wielopierścieniowe węglowodory aromatyczne (WWA). W powietrzu występują w postaci par i aerozoli zalegających na cząstkach pyłu o średnicy 10 μm (PM 10) i 2,5 μm (PM 2,5). W miastach zanieczyszczenie powietrza gazami i pyłem zawieszonym bada się przy użyciu specjalistycznej automatycznej lub półautomatycznej aparatury lub z zastosowaniem procedur analitycznych. Takie tradycyjne podejście, polegające na wykorzystaniu aparatury pomiarowej i analizy chemicznej próbek, nie daje jednak pełnej informacji dotyczącej oddziaływań zanieczyszczeń na organizmy żywe. Dlatego też, w ostatnich latach obserwuje się dynamiczny rozwój technik bioanalitycznych wykorzystujących organizmy żywe jako biowskaźniki. Jednymi z najczęściej wykorzystywanych w bioindykacji organizmów są porosty. Celem badań była ocena zanieczyszczenia powietrza WWA w aglomeracji Kielc z wykorzystaniem Hypogymnia physodes (L.)Nyl. Badania przeprowadzono w dwustutysięcznym mieście położonym w południowo-wschodniej Polsce w latach 2004-2007. W mieście, na podstawie poziomu natężenia ruchu kołowego, wytypowano 4 skrzyżowania do badań WWA. Porost Hypogymnia physodes przywożono z Puszczy Boreckiej (NE Polska), obszaru, który dla Polski uznawany jest jako obszar wzorcowo czysty. Porosty, na gałązkach o długości 30 cm, transplantowano w wyznaczonych obszarach, po trzy gałązki w każdym punkcie. Przed każdą ekspozycją pobierano próbkę „O”, którą do czasu analizy chemicznej przechowywano w zamkniętym pojemniku. Ekspozycja każdorazowo trwała 3 miesiące. W zebranych porostach oznaczano WWA. Analizy dokonywano z zastosowaniem HPLC, kolumna Li Chrospher (TM) 100 RP - 18, detektor UV; λ = 254 nm. Stężenie podano w mg·kg-1 suchej masy netto, tj. po odjęciu wartości stężenia WWA oznaczonego w próbce „O”. Plechy po ekspozycji badano w mikroskopie elektronowym skaningowym FEI QUANTA 200 z cyfrowym zapisem obrazu. Analiza uzyskanych danych wykazała zróżnicowanie koncentracji zanieczyszczenia na badanych skrzyżowaniach w zależności od natężenia ruchu kołowego i pory roku. Na wartość stężenia WWA w porostach modyfikująco wpływają warunki meteorologiczne. Opad wpływał na obniżenie WWA w powietrzu poprzez wypłukiwanie go wraz z pyłem zawieszonym. Linia regresji dla skrzyżowania I wynosiła y = 1,91759-0,00674·x, przy przedziale ufności p = 0,0308. Najistotniejsza okazała się korelacja między stężeniem WWA a wilgotnością względną powietrza. Zależność ta wskazuje na wzrost stężenia WWA w porostach wraz ze wzrostem wilgotności. Linia regresji dla skrzyżowania I wynosiła y = -1,04196+0,02897·x, przedział ufności p = 0,0505.
3
63%
EN
Research into and diagnosis of environmental change prior to the introduction of bioindicator methods were linked primarily to apparatus. Drawing attention to the reactions of organisms sensitive to that change and using them in environmental quality control have opened new opportunities for development of a new scientific discipline, known in the literature as bioindication. Bioindication combines several scientific disciplines, including biology, broadly conceived geography, and chemistry. It thus combines in a comprehensible manner apparatus-derived measurements (chemical analysis results) and areas of bioindicator exposure (situation and distance from the emitter), translating these parameters into bioindicators' anatomical and morphological reactions. The development of bioindicator methods progresses rapidly, and - as is usually the case under such circumstances - it is difficult to ensure that they are transparent and that no chaos ensues. In view of the above, it seems necessary to embark on a discussion of these issues and consider compiling lists of most applicable indicator organisms for examination of particular environmental toxins in particular environments.
EN
Due to their occurrence in very different conditions and high resistance to physical and chemical factors, algae are pioneers colonising new environments and their sorption properties are used in biomonitoring and water remediation. The efficiency of the process of heavy metal sorption in algae used for in situ tests depends on abiotic factors, such as the chemical composition of water. Freshwater algae Spirogyra sp. were used in tests. Algae were exposed in the laboratory in manganese chloride solutions with various contents of other cations, including heavy metals and macronutrients. It has been shown that some heavy metals may desorb manganese bound to the surface of algae as a result of ion exchange in the following sequence: Cd2+ < Mn2+ ≈ Zn2+ < Cu2+. It has been also found that the competitiveness of sorption of cations naturally present in the alga environment versus Mn2+ cations changes in the sequence Na+ < Ca2+ < H+, defined for the concentrations referring to the cation unit charge. The results of tests were compared to the results of dried sea algae Palmaria palmata analyses.
PL
Glony ze względu na występowanie w bardzo zróżnicowanych warunkach i dużą odporność na czynniki fizykochemiczne należą do pionierów zasiedlających nowe środowiska, a ich właściwości sorpcyjne są wykorzystywane w biomonitoringu i remediacji wód. Wydajność procesu sorpcji metali ciężkich na glonach wykorzystywanych do badań in situ uzależniona jest od czynników abiotycznych, m.in. od składu chemicznego wody. Do badań wykorzystano słodkowodne glony Spirogyra sp., które w warunkach laboratoryjnych eksponowano w roztworach chlorku manganu o różnym udziale innych kationów, m.in. metali ciężkich i makroelementów. Wykazano, że niektóre metale ciężkie mogą desorbować mangan związany powierzchniowo na glonach wskutek wymiany jonowej, w szeregu Cd2+ < Mn2+ ≈ Zn2+< Cu2+. Stwierdzono również, że konkurencyjność sorpcji kationów naturalnie występujących w środowisku bytowania glonów w stosunku do kationów Mn2+ zmienia się zgodnie z szeregiem: Na+ < Ca2+ < H+, wyznaczonym dla stężeń molowych odniesionych do jednostkowego ładunku kationu. Wyniki badań porównano z wynikami analiz przeprowadzonych na suszonych glonach morskich Palmaria palmata.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.