Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

A focus on homocysteine in autism

100%
EN
Homocysteine is an amino acid, which plays several important roles in human physiology. A wide range of disorders, including neuropsychiatric disorders and autism, are associated with increased homocysteine levels in biological fluids. Various B vitamins: B6 (pyridoxine), B12 (cobalamin), and B9 (folic acid) are required as co-factors by the enzymes involved in homocysteine metabolism. Therefore, monitoring of homocysteine levels in body fluids of autistic children can provide information on genetic and physiological diseases, improper lifestyle (including dietary habits), as well as a variety of pathological conditions. This review presents information on homocysteine metabolism, determination of homocysteine in biological fluids, and shows abnormalities in the levels of homocysteine in the body fluids of autistic children.
2
100%
EN
Homocysteine is an amino acid which plays several important roles in human physiology and is an important biomarker for possible deficiencies of various vitamins (vitamin B6 and B12, folic acid). In this work GC-MS method was used to determine the levels of homocysteine in the urine of autistic and healthy children. The levels of homocysteine in urine samples from 34 autistic and 21 healthy children were 2.36 ± 1.24 and 0.76 ± 0.31 (mmol∙mol-1 creatinine), respectively. The higher level of homocysteine in autistic children may indicate deficiencies of folic acid and vitamins B6 and B12 in nutrition of these children. The results of this work were taken into consideration in the nutrition of autistic children treated in the Navicula Centre of Diagnosis and Therapy of Autism in Łódź (Poland).
3
Content available remote

Graphene oxide-assisted synthesis of LiMn2O4nanopowder

88%
EN
The article reports sol-gel synthesis of nanosized spinel-type lithium manganese oxide LiMn2O4 (LMO) carried out in the presence of graphene oxide (GO) and its electrochemical lithium insertion ability. The synthesis was performed in an aqueous environment with lithium acetate and manganese acetate used as precursors and citric acid as a chelating agent. The material was characterized by X-ray diffraction, SEM microscopy, Raman spectroscopy and cyclic voltammetry. The calcination step totally eliminated graphene from the final product, nevertheless its presence during the synthesis was found to affect the resulting LiMn2O4 morphology by markedly reducing the size of grains. Moreover, potentials of electrochemical lithium insertion/deinsertion reactions have been shifted, as observed in the cyclic voltammetry measurements. Along with the diminished grain size the voltammetric curves of the graphene oxide-modified material exhibit higher oxidation and lower reduction peak currents. The study demonstrates that GO mediation/assistance during the sol-gel synthesis fosters more nanostructured powder and changes the electrochemical characteristics of the product
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.