Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Time-resolved studies of light diffraction on free carrier phase gratings and light absorption in subnanosecond time domain were carried out in two distinct areas of semi-insulating GaAs with high and low growth-defect density. Numerical analysis was performed in order to reveal the role of EL2 defect in carrier generation and transport. The possibility of transient grating technique to study various defect-governed carrier relaxation processes were demonstrated experimentally.
EN
We present experimental studies of nonequilibrium carrier dynamics in InGaN alloys with 70-90% content of In by using picosecond transient grating technique. The observed faster recombination rate in alloys with higher Ga content and formation of a thermal grating via a lattice heating, being more pronounced for layers with larger band gap, indicated that the main reason of the heating is not the excess energy of photons, but the defect density which increases with Ga content. A gradual decrease in carrier lifetime with excitation or with increasing temperature in 50-300 K range point out the role of potential barriers in carrier recombination.
EN
Role of deep impurity levels in carrier generation, transport, and recombination were investigated in bulk ZnSe:Cr and ZnTe:V:Al crystals by four-wave mixing technique. The temporal and exposure dependencies of optical nonlinearities in ZnSe:Cr evidenced an influence of Cr1+/Cr2+ states in carrier generation, exhibited very fast carrier relaxation, and revealed the presence of competing recombination mechanisms. Similar investigations in ZnTe:V:Al showed an effective carrier generation from Al-induced defect complexes as well as very fast carrier capture by Zn-vacancies.
EN
We characterized optical and photoelectrical properties of undoped and Ga-doped ZnO layers differently grown on sapphire substrates by using complementary optical methods. Different stimulated emission threshold values for ZnO epitaxial layers grown by pulsed laser deposition and MBE methods were attributed to crystalline quality of the layers and the growth method used. Different carrier lifetimes in various ZnO epitaxial layers are explained by defect-related and intrinsic mechanisms of recombination.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.