Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 17

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
vol. 125
|
issue 6
1332-1334
EN
The goal of this work is the micro-Raman study of molecular hydrogen localized in cone-shaped defects, which are formed on the surface of previously helium implanted and annealed Czochralski Si wafers as a result of hydrogen plasma treatment. The line at ≈ 4158 cm^{-1} corresponding to molecular hydrogen is observed in the Raman spectra when the laser beam is focused both on cone-shaped defects or defect-free regions of the surface. The laser irradiation of cone-shaped defects during micro-Raman experiments leads to intensity increase of this line when the irradiation time is increasing, with subsequent appearance of lines at ≈ 3621 and ≈ 3698 cm^{-1} and simultaneous disappearance of 4158 cm^{-1} line. No such effect was observed when the laser beam was focused on defect-free regions. The experiments have shown that heat treatment of the samples studied causes the appearance in the Raman spectra of lines at ≈ 3468, ≈ 3621, and ≈ 3812 cm^{-1}, which can be associated with molecular hydrogen.
EN
We describe here structure and temperature dependences of conductivity σ(T), the Seebeck coefficient α(T), thermal conductivity λ(T) and figure-of-merit ZT(T) in Ca_3Co_4O_9 ceramics, doped with Fe and Y, depending on compacting pressure (0.2 or 6 MPa) and temperature (300 < T < 700 K). It is shown that introduction of iron and yttrium to ceramics does not alter the crystalline structure of the material. Increasing the pressure in the compacting process before the additional diffusion annealing leads to a smaller-grained structure and increase σ and λ due to reducing of the synthesized samples porosity. The Seebeck coefficients of nanocomposite ceramics Ca_3Co_{3.9}Fe_{0.1}O_9 and (Ca_{2.9}Y_{0.1})(Co_{3.9}Fe_{0.1})O_9 have linear dependences on temperature is not changed after increase of compacting pressure. Electrical-to-heat conductivity ratio (σ/λ) for the samples compacted at high (6 GPa) pressure increases not more than 20-30% in comparison with ones compacted at low (0.2 GPa) pressure, whereby ZT is increased more than 50%. The main reason for this effect is samples porosity reduction with the compacting pressure increase.
EN
In the present paper the investigations of the influence of swift heavy ion irradiation on the magnetotransport in the antimony (Sb) δ-layer in silicon are reported. Temperature and magnetic field dependences of the resistance R(T,B) and the Hall coefficient R_H(T,B) in the temperature range of 2K < T < 300K and B ≤ 8T before and after the 167 MeV Xe⁺²⁶ ion irradiation (ion fluence of 10⁸ cm¯²) were measured. At the temperatures below 50K there is observed the transition from the Arrhenius log R(1/T) to a logarithmic R ≈ -log(T) dependence both before and after the swift heavy ion exposure which confirms the assumption that the carrier transport goes through the δ-layer mainly. Moreover, the transition from the positive to negative magnetoresistance was observed with the temperature decrease that is characteristic of the two-dimensional quantum corrections to the conductivity in the case of weak localization regime. The appropriate Thouless lengths L_{Th}(T) ≈ A × T^{p} (where p and A are dependent on the scattering mechanism) indicated their ≈ 25-30% decrease after the swift heavy ion exposure. It was shown that the exponent p values were close to the theoretical one of p = 1, confirming the realization of 2D weak localization regime in the carrier transport.
EN
This paper presents the investigations of the electrical properties of the (CoFeZr)_{x}(PZT)_{1-x} nanocomposite with the metallic phase content x=43.8 at.%, which was produced by ion beam sputtering. Such preparation took place under an argon atmosphere with low oxygen content with its partial pressure P_{O₂} = 2×10¯³ Pa. The measurements were performed using alternating current within the frequency range of 50 Hz-10⁵ Hz for measuring temperatures ranging from 238 K to 328 K. The (CoFeZr)_{43.8}(PZT)_{56.2} nanocomposite sample subjected to a 15 min annealing process in air at the temperature Tₐ=423 K demonstrates a phase angle of -90° ≤ θ ≤ 0° in the frequency range 50 Hz-10⁵ Hz. It corresponds to the capacitive type of conduction. In the frequency range 10⁴-10⁵ Hz sharp minima in selected conductivity vs. frequency characteristics occur, which corresponds to a current resonance phenomenon in RLC circuits. In case of a sample annealed at Tₐ=498 K the inductive type of conduction with 0° ≤ θ ≤ +90° occurs in a high frequency area. At the frequency f_{r} characterized by the phase angle θ = 0°, the capacity value reaches its local minimum. It indicates a voltage resonance phenomenon in conventional RLC circuits. The θ = +90° crossing in the frequency dependence of phase angle corresponds to the current resonance phenomenon, which is represented by a strong local minimum in the conductivity vs. frequency characteristics.
EN
The main goal of this work is to establish the influence of annealing on the properties of Cz-Si wafers previously subjected to the hydrogen ion-beam treatment at 25 or 300-350°C. It is demonstrated by the conducted study that, despite similarity in the effects of the hydrogen ion-beam treatment at different temperatures on some electrical properties of the wafers (photovoltage spectra, thermoelectromotive force sign), thermal stability of changes in these properties due to the hydrogen ion-beam treatment depends on the hydrogenation temperature.
|
|
vol. 125
|
issue 6
1271-1275
EN
Investigation of electrical resistivity ρ and magnetoresistance in single crystalline n-type silicon heavily doped with antimony in the temperature range ΔT=5-300 K and at the magnetic inductance B up to 8 T was performed. It was established that, for the temperature range ΔT=25-300 K the conductivity is of activation type, while for ΔT=5-25 K it is of variable range hopping and is described by the Mott law. Parameters of the Mott hopping were calculated. It was shown that, to explain the experimental data, the spin polarized hopping via the occupied states has to be taken into account. The obtained parameters revealed that for the low temperature range ΔT=5-11 K the spin polarized hopping dominates, while for ΔT=11-20 K the spin polarized transport is accompanied by the wave function contraction.
EN
This paper presents the investigations of electrical properties and effect of annealing on conductivity of (CoFeZr)_{x}(CaF_2)_{100-x} nanocomposites produced by ion-beam sputtering in the Ar and O_2 ambient. Investigations into conductivity of (CoFeZr)_{x}(CaF_2)_{100-x} nanocomposites depending on the measuring temperature and the annealing temperature have been performed. The application of a combined argon-oxygen beam brings about lowering of the potential barrier on the surface of nanoparticles. In the course of annealing the additional oxidation occurs. First it proceeds on the surface and then all through the metallic-phase particles.
EN
In this paper the results of examinations of nanocomposites Cu_{x}(SiO_{y})_{100-x} produced by ion beam sputtering using argon ions were presented. The examinations were performed by the use of ac devices for measuring frequency in the range 50 Hz-1 MHz and temperatures from 81 K to 273 K. The measurements were performed for the samples directly after production. Based on temperature dependences of conductivity σ , which were determined at the frequency 100 Hz, the Arrhenius graphs were prepared. From these graphs conductivity activation energies ΔE were calculated. Dependences of conductivity and activation energy of electrons on the metallic phase content x at the frequency 100 Hz were determined. Analysis of the obtained dependences shows that conductivity is a parabolic function of the metallic phase content x in nanocomposites. Changes of activation energies of nanocomposites, in which metallic phase contents are in the ranges x < 12 at.% and x > 68 at.%, demonstrate negative values - metallic type of conductivity. In the range 12 at.% < x < 68 at.% activation energies have positive values - the dielectric type of conductivity. It was established that for the metallic phase content of about 68 at.% the real percolation threshold occurs, and the conduction changes from dielectric to metallic type.
EN
We report the investigation of a real part of the admittance σ of granular nanocomposites (Fe_{0.45}Co_{0.45}Zr_{0.10})_{x}(Al_2O_3)_{1 - x} with 0.30 < x < 0.70 in the dielectric (hopping) regime. An analysis of the σ(T, f, x) dependences in the as-deposited and annealed films over the temperature 77 K < T < 300 K and frequency 50 < f < 10^6 Hz ranges displayed the predominance of an activation (hopping) conductance mechanism with dσ/ dT > 0 for the samples below the percolation threshold x_{C} ≈ 0.76 ± 0.05. Based on the earlier models for hopping AC conductance, computer simulation of the frequency coefficient α_{f} of hopping conductance depending on the probability of jump p, frequency f, and also on the shape of σ(f) curve was performed. The experimental and simulation results revealed a good agreement.
|
|
vol. 125
|
issue 6
1351-1355
EN
This paper studies the temperature dependences (2 < T < 300 K) of the DC conductivity σ(T) for the (Co_{0.45}Fe_{0.45}Zr_{0.10})_x(Al_2O_3)_{1-x} nanocomposites (30 < x < 65 at.%) sputtered in Ar + O_2 atmosphere. It is shown that at temperatures lower than 100-150 K dependences of DC conductance on temperature for all the studied samples are due to the Shklovski-Efros variable range hopping mechanism. It was also observed that σ(x,T) dependences can be attributed to the formation of FeCo-based oxide "shells" around metallic alloy nanoparticles due to incorporation of oxygen in the vacuum chamber during the deposition procedure.
EN
The present paper investigates the temperature/frequency dependences of admittance Z in the granular Cu_x(SiO₂)_{1-x} nanocomposite films around the percolation threshold x_{C} in the temperature range of 4-300 K and frequencies of 20-10⁶ Hz. The behavior of low-frequency ReZ(T) dependences displayed the predominance of electrons hopping between the closest Cu-based nanoparticles for the samples below the percolation threshold x_{C} ≈ 0.59 and nearly metallic behaviour beyond the x_{C}. The high-frequency curves ReZ(f) at temperatures T > 10 K for the samples with x < x_{C} exhibited behavior close to ReZ(f) ≈ f^{-s} with s ≈ 1.0 which is very similar to the known Mott law for electron hopping mechanism. For the samples beyond the percolation threshold (x > x_{C}), the frequency dependences of ReZ(f) displayed inductive-like (not capacitive) behaviour with positive values of the phase shift angles.
EN
In doped TlGaSe_2 crystals the phase transitions at low temperatures (100-170 K) were observed using admittance and dielectric spectroscopy in a temperature range of 80-320 K. The admittance and permittivity measurements in the studied samples indicated that after Fe or Tb doping by impurities with concentrations N_{imp} < 0.5 at.% nonequilibrium electronic phase transition is observed. Doping with N_{imp} > 0.5 at.% resulted in full suppression of this phase transition presence.
EN
The temperature and frequency dependences of the admittance real part σ (T, f) in granular (Fe_{45}Co_{45}Zr_{10})_{x}(Al_2O_3)_{100 - x} nanocomposite films around the percolation threshold x_{C} were investigated. The behaviour of σ (T, f) vs. the temperature and frequency over the ranges 77-300 K and 50 Hz-1 MHz, respectively, displays the predominance of an activation (hopping) conductance mechanism for the samples below the percolation threshold x_{C} and of a metallic one beyond the x_{C} determined as 54 ± 2 at.%. The mean hopping range d for the nanoparticles diameter D was estimated at different metallic phase content x.
EN
In this paper the results of investigations of electrical properties of metal-dielectric nanocomposites (FeCoZr)_x(CaF₂)_{100-x} are presented. The samples with the metallic phase content x=45.7 at.% were produced by ion-beam sputtering method in pure argon atmosphere, and subsequently annealed at 398 K for 15 min. The measurements of electrical properties were performed in the frequency range from 50 Hz to 1 MHz. The frequency dependences of phase angle θ, capacity C_{p}, conductivity σ and dielectric loss factor tanδ were measured at seven different temperatures ranging from 148 K to 263 K. It was found that the nanocomposite exhibits the phenomena of voltage resonance and current resonance, characteristic of the conventional RLC circuits with series and parallel connections of elements.
EN
This paper investigates the inductive contribution to AC conductance in the granular nanocomposites (Fe_{0.45}Co_{0.45}Zr_{0.10})_{x}(Al_2O_3)_{1-x}. The initial nanocomposites studied were manufactured in Ar+O_2 atmosphere by ion-beam sputtering of the target containing Fe_{0.45}Co_{0.45}Zr_{0.10} and alumina stripes and then subjected to the annealing procedure in air over the temperature range 373 K < T_{a} < 873 K. These samples, before and after annealing, were studied using the temperature 77 K < T_{p} < 300 K and frequency 50 Hz < f < 1 MHz dependences of a real part of the admittance σ(T, f). Analysis of the observed σ (f, T_{p}) dependences for x < 0.5 demonstrated that in the studied samples the equivalent circuits with the capacitive and noncoil-like inductive contributions can be accomplished. Just in this case, the capacitive properties of RLC circuit with the phase angle - 90° ≤ θ_{L} < 0° are exhibited at low frequencies and the inductive properties with 0° ≤ θ_{H} < 90° become apparent at high frequencies. A value of the critical frequency f_{R}, where θ_{H} changes sign, depends on the metallic phase concentration x, measuring temperature T_{p}, and annealing temperature T_{a}.
EN
In this work anisotropic magnetoresistance in nanogranular Ni films and Ni nanorods on Si(100) wafer substrates was studied in wide ranges of temperature and magnetic field. To produce Ni films and nanorods we used electrochemical deposition of Ni clusters either directly on the Si substrate or into pores in SiO₂ layer on the Si substrate. To produce mesopores in SiO₂ layer, SiO₂/Si template was irradiated by a scanned beam of swift heavy 350 MeV ¹⁹⁷Au²⁶⁺ ions with a fluence of 5×10⁸ cm¯² and then chemically etched in diluted hydrofluoric acid. Pores, randomly distributed in the template have diameters of 100-250 nm and heights about 400-500 nm. Comparison of temperature dependences of resistance and magnetoresistance in Ni films and n-Si/SiO₂/Ni structures with Ni nanorods showed that they are strongly dependent on orientation of magnetic field and current vectors relative to each other and the plane of Si substrate. Moreover, magnetoresistance values in n-Si/SiO₂/Ni nanostructures can be controlled not only by electric field applied along Si substrate but also by additionally applied transversal bias voltage.
EN
A study of magnetotransport in the n-Si/SiO_2/Ni nanostructures with granular Ni nanorods in SiO_2 pores was performed over the temperature range 2-300 K and at the magnetic fields induction up to 8 T. The n-Si/SiO_2/Ni Schottky nanostructures display the enhanced magnetoresistive effect at 25 K due to the impurity avalanche mechanism.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.