Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The anisotropy of several PVA/magnetosomes magnetically textured films has been investigated from the point of view of magnetic properties. The thin film synthesized under the influence of a magnetic field (99 mT) shows the typical behavior of an anisotropic material. On sample textured in magnetic field the magnetisation loop measurements were performed in dependence on the direction of the external magnetic field with respect to the texture axis. The results of hysteresis measurements show that the magnetic field applied during the synthesis promotes an orientation of the chains of magnetosomes and permanently textured film is obtained after solidification. The obtained values for magnetic remanence and coercivity were dependent on the external magnetic field orientation and the alignment effect of particle moments may be clearly seen which is in agreement with the theoretical model of magnetic particle chains.
2
Content available remote

Magnetic Properties of Bacterial Nanoparticles

86%
EN
The objective of this study is to prepare and study magnetic properties of biological magnetic nanoparticles (magnetosomes) as a product of biomineralization process of magnetotactic bacteria Magnetospirillum sp. AMB-1. From temperature dependence of remanent magnetization and coercive field the Verwey transition is clearly seen at 105 K as a consequence of the large anisotropy along the chains of magnetosomes.
EN
In this work, the magnetic properties of biologically produced magnetite (magnetosomes) by biomineralization process were compared to those of chemically synthesized Fe_3O_4. The coercivity of 185 Oe in magnetosomes is connected with the fact that the mean diameter is larger than critical size for transition from superparamagnetic to ferromagnetic behavior. A sharp magnetic transition at 105 K (Verwey transition) is clearly present in magnetosomes while in opposite, this transition is missing in Fe_3O_4.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.