Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Mobility of interacting inorganic nanoparticles

100%
EN
The mobility of the 110 nm-Fe2O3 particles in a viscous sucrose solution depends on the concentration of the nanoparticles. When the average particle–particle nearest neighbor distance is less than 250 nm, the particle interaction slows down their mobility. When is more than 170 nm, the small mobility of nanoparticles does not depend on their concentration. The critical distance is approximately equal to 2Rh = 260 nm, where Rh is the hydrodynamic radius, determined by the dynamic light scattering (DLS) method.
EN
Mössbauer investigations, in association with density functional theory (DFT) calculations, have been conducted for the molecular and electronic structures of iron (III) [tetrakis (pentafluorophenyl)] porphyrin chloride [(F20TPP)Fe:Cl], as a Fe(III)-tetraphenylporphyrin complex containing chloride axial ligand and substituted hydrogen atoms by fluorine ones in the four phenyl rings, in comparison with its fluorine unsubstituted analogue [(TPP)Fe:Cl]. It was found that the parameters of Mössbauer spectra of both complexes are close to one another, and correspond to the high-spin state of Fe(III) ions, but they show the different temperature dependence and the quadrupole doublets in Mössbauer spectra show different asymmetry at low temperatures. Results of DFT calculations are analyzed in the light of catalytic activity of the halogenated complex.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.