Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 8

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
2
Content available remote

Investigations on the EPR Parameters of KMgF_3:Cr^{+}

99%
|
|
vol. 125
|
issue 5
1224-1228
EN
The electron paramagnetic resonance parameters (i.e., g factor, hyperfine structure constant and superhyperfine parameters) of KMgF_3:Cr^{+} are theoretically investigated from the perturbation formulae of these parameters for an octahedral 3 d^5 cluster. As for the calculations of g factor and hyperfine structure constant, both the contributions from the crystal-field and charge transfer mechanisms are included based on the cluster approach. The metal to ligand charge transfer contribution to the g-shift Δg ( ≈ g-2.0023) is the same (negative) in sign and much larger in magnitude as compared to the crystal-field one. The conventional argument that the charge transfer contributions to zero-field splittings are negligible for 3 d^5 ions in fluorides is no longer suitable for Δg analysis of KMgF_3:Cr^{+} due to the dominant second-order charge transfer perturbation term. The charge transfer contribution to hyperfine structure constant exhibits the same sign and about 4% of the crystal-field one. The unpaired spin densities of the fluorine 2s, 2pσ and 2pπ orbitals are quantitatively acquired from the relationships with the relevant molecular orbital coefficients using the uniform model. The present treatments are superior to the previous calculations of directly fitting the experimental superhyperfine parameters.
EN
Winter wheat cultivars Aquileja (AQ) and Xian Nong 4(XN) were previously reported to possess durable, quantitative resistance to stripe rust disease. In the present study, AQ, XN and a susceptible wheat cultivar were reciprocally crossed in all 6 combinations. Parents, F1, F2, F3, BCP1 and BCP2 were used to determine quantitative genetic parameters for infection type and disease severity. The results showed that fixable genetic components preponderated in the inheritance of the resistance in AQ and XN for both infection type and disease severity, while the dominant component could be detected in some cases. The resistance was conditioned by oligogenes. Heritability of the resistance ranged from 50 to 79% in most cases.
EN
Winter wheat cultivars Aquileja (AQ) and Xian Nong 4(XN) were previously reported to possess durable, quantitative resistance to stripe rust disease. In the present study, AQ, XN and a susceptible wheat cultivar were reciprocally crossed in all 6 combinations. Parents, F1, F2, F3, BCP1 and BCP2 were used to determine quantitative genetic parameters for infection type and disease severity. The results showed that fixable genetic components preponderated in the inheritance of the resistance in AQ and XN for both infection type and disease severity, while the dominant component could be detected in some cases. The resistance was conditioned by oligogenes. Heritability of the resistance ranged from 50 to 79% in most cases.
EN
We present a study of the Cerenkov configuration second harmonic generation in X-cut ion-implanted lithium niobate waveguides. An approximate solution of conversion efficiency is given and plotted which shows that it is very sensitive to the waveguide depth and pump wavelength. The results can be used in the design of waveguides for the efficient second harmonic generation in the Cerenkov configuration.
EN
A repetitive sequence of 411 bp, named pSaO5411, was identified in the Secale africanum genome (Ra) by random amplified polymorphic DNA (RAPD) analysis of wheat and wheat?S. africanum amphiploids. GenBank BLAST search revealed that the sequence of pSaO5411 was highly homologous to a part of a Ty1-copia retrotransposon. Fluorescence in situ hybridization (FISH) analyses indicated that pSaO5411 was significantly hybridized to S. africanum chromosomes of a wheat?S. africanum amphiploid, and it was dispersed along the Secale chromosome arms except the terminal regions. Basing on the sequence of pSaO5411, a pair of sequence-characterized amplified region (SCAR) primers were designed, and the resultant SCAR marker was able to target both cultivated rye and the wild Secale species, which also enabled to identify effectively the S. africanum chromatin introduced into the wheat genome.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.