Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2008
|
vol. 6
|
issue 2
258-266
EN
A cheap and efficient fibrous hydrolyzed polyacrylonitrile (HPAN) sorbent was obtained by alkaline hydrolysis of Romanian polyacrylonitrile fibres. Scanning electronic microscopy and infrared spectroscopy were used to characterize the hydrolyzed product and to confirm its functionalization. The adsorptive potential of the proposed sorbent for reactive dye Brilliant Red HE-3B removal from aqueous solutions of pH=2 was examined by the batch technique as a function of dye concentration, temperature solution and contact time. The Freundlich, Langmuir and Dubinin-Radushkevich adsorption models were applied to describe equilibrium sorption data and to determine the corresponding isotherm constants. The thermodynamic parameters ΔG, ΔH and ΔS were also determined; the values obtained show that sorption of reactive dye on HPAN fibres is a spontaneous, endothermic and entropy-driven process. The kinetics of sorption of the reactive dye were analyzed using pseudo-first order and pseudo-second order kinetic models. The kinetic data fitted well to pseudo-second order kinetics, indicating the chemisorption of reactive dye onto the fibrous sorbent. The sorption mechanism of the dye onto hydrolyzed fibres was confirmed by FTIR spectroscopy. The dye-loaded HPAN sorbent can be regenerated by treatment with 0.1M NaOH and the regenerated sorbent may be reused in several adsorption-desorption cycles. The results of this study provided evidence that the HPAN fibres are effective for removing reactive dye Brilliant Red HE-3B from aqueous effluents. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.