Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Evaluation of Marble Dust for Soil Stabilization

100%
EN
Usage of marble dust was investigated for soil stabilization in the scope of utilization of waste material. Geotechnical properties, such as compaction, Atterberg limits, unconfined compressive strength of the mixtures and changes of these properties with the marble dust ratio were determined. From the test results it is seen that marble dust increases the mechanical properties of soil and application of dust wastes for soil stabilization will be an efficient practice in terms of solid waste management.
EN
This paper reports an experimental study on the design of self-compacting lightweight concrete using acidic pumice with different powder materials. For this aim, nine self-compacting lightweight concretes were designed with inclusion of two different fine aggregates and different powder materials. This way, two groups of concrete were designed. First group was composed of single type of aggregate which is acidic pumice from Bitlis Region with barite powder, fly ash powder and pumice powder inclusion, while the second group was generated with river sand as a fine aggregate and acidic pumice from Bitlis Region, as a coarse aggregate with the same powder addition. In the design process, slump-flow, V-funnel and L-box tests were applied to determine the fresh properties of self-compacting lightweight concrete. After the design, test of compressive strength, which is one of the most important parameters of concrete, was applied to all self-compacting lightweight concretes in early age. Moreover, ultrasound pulse velocity test was also performed on all concrete series at the same ages.
EN
This paper reports results of an experimental study of the strength properties of fibre reinforced self-compacting concrete (FRSCC). For this aim, a control self-compacting concrete and 24 FRSCCs were designed, applying fresh self-compacting concrete criteria tests. In the design of FRSCC, four steel and two polypropylene synthetic fibres of different lengths and aspect ratios were used. These fibres were used alone and in combinations with two and four of these fibres. In this way, not only the effect of single fibre and the synergy effect of hybrid fibres, but also the size and concentration effect of fibres, which had different ratios in total fibre volume, were investigated. In the design process, Portland cement and fly ash were used as the binder and the powder material. The compressive and flexural-tensile strength tests were employed at the age of 3, 7, 28, 56 and 90 curing days, to determine the strength properties of FRSCCs. Moreover, ultrasound pulse velocity test was also performed on all concrete series at the same ages.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.