Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The marine environment is estimated to be one of the most significant sources of biological activity in the world. In the last few decades an increase in the research intensity conducted on marine microorganisms has been observed, which confirms the great potential of these organisms in the field of bioactive compounds' production. In order to efficiently use the natural resources of the marine environment, metagenomics can be applied. This powerful technique allows for efficient screening of microbial biodiversity for bioactive compounds. The primary aim of this review is to present some aspects of the construction of metagenomic libraries, and strategies of screening for novel bioactives in the marine surrounding. This paper also illustrates several examples of the application of metagenomic methods in the discovery of novel enzymes and drugs in various marine environments.
|
2017
|
vol. 64
|
issue 4
699-704
EN
Determination of mtDNA copy number in the cell is crucial to understand many cellular processes. Recently, the number of studies with the use of mitochondrial DNA (mtDNA) content as the determinant of mitochondrial abnormalities increased greatly and is still growing, therefore, optimization of technical conditions for this analysis is crucial. Despite using similar laboratory protocols, some results cannot be compared between research centers, thus causing discrepancies in the assessment of mtDNA content. The aim of this work was to test which conditions of biological sample collection and storage affect estimation of mtDNA level relative to the nuclear DNA (nDNA) in the blood samples and dermal fibroblasts. We found that the time and temperature of sample storage, as well as the type of the blood sample (whole blood or leukocytes) influence the estimate of mtDNA/nDNA ratio in the blood. In the case of dermal fibroblasts collected from healthy control and Huntington disease patients, our data indicate that the passage number of cells is essential to obtain reliable results.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.