Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We present a direct way of patterning CdSe/ ZnS quantum dots by dip-pen nanolithography and polymer pen lithography. Mixtures of cholesterol and phospholipid 1,2-dioleoyl-sn-glycero-3 phosphocholine serve as biocompatible carrier inks to facilitate the transfer of quantum dots from the tips to the surface during lithography. While dip-pen nanolithography of quantum dots can be used to achieve higher resolution and smaller pattern features (approximately 1 μm), polymer pen lithography is able to address intermediate pattern scales in the low micrometre range. This allows us to combine the advantages of micro contact printing in large area and massive parallel patterning, with the added flexibility in pattern design inherent in the DPN technique.
EN
Dip-pen nanolithography (DPN) and Polymer pen lithography (PPL) are powerful lithography techniques being able to pattern a wide range of inks. Transport and surface spreading depend on the ink physicochemical properties, defining its diffusive and fluid character. Structure assembly on surface arises from a balance between the entanglement of the ink itself and the interaction with the substrate. According to the transport characteristics, different models have been proposed. In this article we review the common types of inks employed for patterning, the particular physicochemical characteristics that make them flow following different dynamics as well as the corresponding transport mechanisms and models that describe them.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.