Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 9

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The SeqA protein of Escherichia coli is not only the main negative regulator of DNA replication initiation but also a specific transcription factor. It binds to hemimethylated GATC sequences and, with somewhat different specificity, to fully methylated GATC regions. Recently, a microarray analysis was reported, in which transcriptomes of wild-type and ΔseqA strains were compared. Although in the seqA mutant the levels of some transcripts were significantly decreased while certain transcripts were evidently more abundant relative to wild-type bacteria, no correlation between the presence of GATC motifs in promoter sequences and transcription activity was found. However, here we show that when larger DNA fragments, encompassing positions from -250 to +250 relative to the transcription start site, are analyzed, some common features of GATC distribution near the promoters activated by SeqA can be demonstrated. Nevertheless, it seems that the GATC pattern is not the only determinant of SeqA-dependence of promoter activity.
EN
Stroke is one of the most devastating neurological conditions, with an approximate worldwide mortality of 5.5 million annually and loss of 44 million disability-adjusted life-years. The etiology of stroke is often unknown; it has been estimated that the etiology and pathophysiology remains unexplained in more than 40% of stroke cases. The conventional stroke risk factors, including hypertension, diabetes mellitus, smoking, and cardiac diseases, do not fully account for the risk of stroke, and stroke victims, especially young subjects, often do not have any of these factors. It is very likely that inflammation, specific genetic predispositions and traditional risk factors interact with each other and may together increase the risk of stroke. Inflammatory and immune responses play important roles in the course of ischemic stroke. Hyperhomocysteinemia (hcy) is considered a modifiable risk factor for stroke, possibly through an atherogenic and prothrombotic mechanism. Both genetic and environmental factors (e.g., dietary intake of folic acid and B vitamins) affect homocysteine level. Identification of the role of hcy as a modifiable risk factor for stroke and of HSPs as regulators of the immune response may lead to more effective prevention and treatment of stroke through dietary and pharmacological intervention. Dietary modification may also include supplementation with novel preventive compounds, such as the antioxidative isoflavones - genistein or daidzein.
EN
Diabetes is one of the major challenges of modern medicine, as it is considered a global epidemic of the XXI century. The disease often leads to the development of serious, health threatening complications. Diabetic foot syndrome is a characteristic set of anatomical and molecular changes. At the macroscopic level, major symptoms are neuropathy, ischemia and chronic ulceration of the lower limb. In every third patient, the neuropathy develops into Charcot neuroarthropathy characterized by bone and joints deformation. Interestingly, all these complications are a result of impaired healing processes and are characteristic for diabetes. The specificity of these symptoms comes from impaired molecular mechanisms observed in type 1 and type 2 diabetes. Decreased wound and fracture healing reflect gene expression, cellular response, cell functioning and general metabolism. Here we present a comprehensive literature update on the molecular factors contributing to diabetic foot syndrome.
EN
Atheromatous plaque is one of the most common cardiovascular-related diseases. Reports show a connection between its development and the levels of homocysteine. In pathological states high levels of homocysteine in the organism can be caused by the malfunction of the methionine synthase pathway. Bacterial methionine synthase (MetH) is a homologue of the human methionine syntase (MS). In this study we aimed to investigate the functional relations between MetH and its cofactor - cobalamine - under stress conditions. We have demonstrated that heat shock proteins (Hsp 70/100 system or HtpG) can protect MetH activity under stress conditions. Moreover, in the presence of cobalamine they can restore the activity of partially denatured methionine synthase.
EN
Cytotoxicity of laronidase (Aldurazyme®), employed in enzyme replacement therapy (ERT) for mucopolysaccharidosis type I (MPS I) and various siRNAs, tested previously in studies on substrate reduction therapy (SRT) for mucopolysaccharidoses, was tested. The enzyme did not cause any cytotoxic effects, and the siRNAs did not inhibit growth of most investigated cell lines. However, some cytotoxic effects of some tested siRNAs were observed in one MPS IIIA cell line. The efficacy of a combination of enzyme replacement therapy and siRNA-based substrate deprivation therapy was tested on three MPS I cell lines. Surprisingly, different results were obtained for different cell lines. The decrease of glycosaminoglycan storage in cells treated simultaneously with both methods was: (i) less pronounced than obtained with either of those methods used alone in one cell line, (ii) similar to that observed for enzyme replacement therapy in another cell line, and (iii) stronger than that obtained with either of the methods used alone in the third cell line. Therefore, it appears that the effects of various therapeutic methods may strongly depend on the features of the MPS cell line.
EN
Ischemic stroke is the second leading cause of death worldwide. One of the main risk factors of the ischemic stroke is atherosclerosis which is a chronic inflammatory and immune-mediated disease. Bacterial infections generate specific human antibodies against various antigens, including Hsps. It has been demonstrated that Hsps are selectively overexpressed in the atherosclerotic lesions. The amino acid sequence homology between human and bacterial Hsps may lead to an autoimmune response by immunological cross-reaction. Such immune response against Hsps overexpressed in the blood vessels under stressful conditions may contribute to inflammatory processes and subsequent development of atherosclerosis. In this study we determined the antibody levels against bacterial and human Hsp by ELISA in blood plasma obtained from stroke patients. Using ANOVA we analyzed levels of Hsp-antibodies in control and patient groups and correlate them with several stroke risk factors. The group of stroke patients had elevated levels of anti-Hsp antibodies compared to the control group. We also discovered an antibody level increase in patients that previously underwent another stroke. Our data provide evidence that autoimmunity could underlie formation of atherosclerosis plaque leading to stroke.
EN
Previously published studies on levels of the transforming growth factor-β1 (TGF-β1) protein and mRNA of the corresponding gene in patients suffering from inflammatory bowel diseases (IBD) gave varying results, leading to contradictory conclusions. To solve the contradictions, we aimed to assess longitudinally TGF-β1 protein and mRNA levels at different stages of the disease in children suffering from IBD. The study group consisted of 19 pediatric patients with IBD at the age between 3.5 and 18.4 years. The control group consisted of 42 children aged between 2.0 and 18.0 years. The plasma TGF-β1 concentration was measured with ELISA. mRNA levels of the TGF-β1 gene isolated from samples of the intestinal tissue were assessed by reverse transcription and real-time PCR. Levels of TGF-β1 protein in plasma and corresponding mRNA in intestinal tissue were significantly higher in IBD patients than in controls. TGF-β1 and corresponding transcripts were also more abundant in plasma and intestinal tissue, respectively, in patients at the active stage of the disease than during remission. In every single IBD patient, plasma TGF-β1 level and mRNA level in intestinal tissue was higher at the active stage of the disease than during remission. Levels of TGF-β1 and corresponding mRNA are elevated during the active stage of IBD but not during the remission. Longitudinal assessment of this cytokine in a single patient may help to monitor the clinical course of IBD.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.