Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this paper the experimental investigations of the YBa_2Cu_3O_{7-δ} single crystal, using atomic force microscopy and magnetic force microscopy, are presented. The atomic force microscopy was used to identify oxidized and unoxidized YBa_2Cu_3O_{7-δ} crystal. The YBa_2Cu_3O_{7-δ} single oxidized crystal was examined for magnetic properties by means of magnetic force microscopy. The research was carried out at a room temperature and in the air atmosphere without external magnetic field.
EN
In this paper we present experimental investigations of carbon nanotubes deposited on highly orientated pyrolytical graphite using scanning tunneling microscopy and scanning tunneling spectroscopy. The aforementioned methods apart from detailed topographic data provided us with information about local density of state. We also show the I-V and dI/dV characteristics, which display the metallic and semiconducting characters of investigated carbon nanotubes. All measurements were taken in the air and at room temperature.
3
Content available remote

In Situ Conductance of Fe/Si and Fe/Ge Multilayers

88%
EN
In this paper we study Fe/Si and Fe/Ge multilayers prepared at room temperature by magnetron sputtering. In situ conductance measurements reveal the formation of interfacial Fe-Si and Fe-Ge mixtures. During the Fe deposition a modification of growth mode is noticed. Deposition of Si (or Ge) onto Fe leads to the reduction of the Fe layer thickness due to interdiffusion, and Fe-Si (or Fe-Ge) structures appear. Above about 1.3 nm of deposited Si (1.5 nm of Ge) nominally pure Si (Ge) starts growing. Surface topography of the Fe/Si multilayers is studied by atomic force microscopy.
4
Content available remote

High Resistivity GaN Single Crystalline Substrates

52%
EN
High resistivity 10^{4}-10^{6} Ω cm (300 K) GaN single crystals were obtained by solution growth under high N_{2} pressure from melted Ga with 0.1-0.5at.% of Mg. Properties of these crystals are compared with properties of conductive crystals grown by a similar method from pure Ga melt. In particular, it is shown that Mg-doped GaN crystals have better structural quality in terms of FWHM of X-ray rocking curve and low angle boundaries. Temperature dependence of electrical resistivity suggests hopping mechanism of conductivity. It is also shown that strain free GaN homoepitaxial layers can be grown on the Mg-doped GaN substrates.
EN
In this note we report briefly on the details of pulsed-current operated "blue" laser diode, constructed in our laboratories, which utilizes bulk GaN substrate. As described in Ref. [1] the substrate GaN crystal was grown by HNPSG method, and the laser structure was deposited on the conducting substrate by MOCVD techniques (for the details see Sec. 2 and Sec. 4 of Ref.~[1], respectively).
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.