Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Oxidative stress, i.e., excessive production of oxygen free radicals and reactive oxygen species, leads to lipid peroxidation and to formation of reactive aldehydes which act as second messengers of free radicals. It has previously been shown that oxidative stress may be involved in the transcriptional regulation of cytomegalovirus (CMV) immediate early promoter, involved in viral reactivation from latency. In the current study we used a plasmid containing the yellow fluorescent protein (YFP) gene under the control of CMV-1 promoter to monitor the influence of hydrogen peroxide and reactive aldehydes, 4-hydroxy-2-nonenal (HNE) and acrolein, on CMV-1 promoter activation in human embryonic kidney cells (HEK293). While acrolein was ineffective, hydrogen peroxide slightly (50 %) stimulated the CMV promoter. In contrast, HNE had a strong, up to 3-fold, enhancing effect on the CMV-1 promoter within four as well as after 24h of treatment. The most effective was the treatment with 24 µM HNE. This effect of HNE suggests that stressful conditions associated with lipid peroxidation could lead to CMV activation.
EN
Bone regeneration is a process of vital importance since fractures of long bones and large joints have a highly deleterious impact on both, individuals and society. Numerous attempts have been undertaken to alleviate this severe medical and social problem by development of novel bioactive materials, among which bioactive glass is the most attractive because of its osteoconductive and osteostimulative properties. Since lipid peroxidation is an important component of systematic stress response in patients with traumatic brain injuries and bone fractures, studies have been undertaken of the molecular mechanisms of the involvement of 4-hydroxynonenal (HNE), an end product of lipid peroxidation, in cellular growth regulation. We found that HNE generated in bone cells grown in vitro on the surfaces of bioactive glasses 45S5 and 13-93. This raises an interesting possibility of combined action of HNE and ionic bioglass dissolution products in enhanced osteogenesis probably through a mitogen-activated protein kinase (MAPK) pathway. While the proposed mechanism still has to be elucidated, the finding of HNE generation on bioglass offers a new interpretation of the osteoinducting mechanisms of bioglass and suggests the possibility of tissue engineering based on manipulations of oxidative homeostasis.
EN
A previous report from our group had shown in vitro a direct interaction between peroxidases and dietary antioxidants at physiological concentrations, where in the absence of H2O2, the antioxidants could serve as oxidizing substrates for the peroxidases. However, the physiological relevance of those findings had not been evaluated. The main objective of this study was to determine whether the oxidizing products produced in the interaction between peroxidase and gallic acid at a physiological concentration of 1 µM may promote cell death or survival in a human microvascular endothelial cell line (HMEC-1). Our findings suggested that gallic acid may show a double-edged sword behaviour, since in the absence of H2O2 it may have a pro-oxidant effect which may promote cell injury (evidenced by LDH, Crystal Violet and calcein AM viability/citotoxicity assays), while in the presence of H2O2, gallic acid may act as an antioxidant inhibiting oxidative species produced in the peroxidase cycle of peroxidases. These observations were confirmed with several oxidative stress biomarkers and the evaluation of the activation of cell survival pathways like AKT and MAPK/ERK.
EN
This study was aimed to demonstrate the efficacy of interval hypoxic training (IHT) in complex treatment of Helicobacter pylori-associated duodenal peptic ulcer disease (DPUD) by parameters of aerobic metabolism and indexes of heart rate variability (HRV). Eighty patients with H. pylori-associated DPUD were included into the study, mean age 32±1.8 yrs, duration of the disease up to 10 years (66.3 %). IHT was modulated using Frolov's hypoxicator (TDI-01) for 30 days after standard eradication therapy. Daily hypoxic sessions consisted of three one-minute sessions, one two-minute, and one three-minute sessions separated by one-minute intervals of room-air breathing. Use of IHT resulted in more efficient elimination of clinical symptoms, histological hallmarks of inflammation and signs of oxidative stress in glandulocytes of the gastric mucosa as determined by 4-hydroxynonenal accumulation. Moderate prooxidant activity of IHT was demonstrated by the increased level of TBARS and oxidatively modified products, normalization of hydroperoxides, middle mass molecules and atherogenic beta-lipoproteins with simultaneous increase in catalase activity and mild decline of SOD activity. Therefore, IHT appeared to be accompanied by higher intensity of redox reactions and enhanced regeneratory processes in cells and tissues. Significant increase in HRV was also noted. Such changes were associated with reduction of inflammation signs and modulation of the autonomic homeostasis in DPUD patients. In general, use of IHT in complex treatment of H. pylori in DPUD patients can be recommended to increase resistance to oxidative stress and to modulate autonomic balance and oxidative homeostasis.
EN
Breast cancer is a leading cause of mortality and morbidity in women, mostly due to high metastatic capacity of mammary carcinoma cells. It has been revealed recently that metastases of breast cancer comprise a fraction of specific stem-like cells, denoted as cancer stem cells (CSCs). Breast CSCs, expressing specific surface markers CD44+CD24-/lowESA+ usually disseminate in the bone marrow, being able to spread further and cause late metastases. The fundamental factor influencing the growth of CSCs is the microenvironment, especially the interaction of CSCs with extracellular matrix (ECM). The structure and function of ECM proteins, such as the dominating ECM protein collagen, is influenced not only by cancer cells but also by various cancer treatments. Since surgery, radio and chemotherapy are associated with oxidative stress we analyzed the growth of breast cancer CD44+CD24-/lowESA+ cell line SUM159 cultured on collagen matrix in vitro, using either native collagen or the one modified by hydroxyl radical. While native collagen supported the growth of CSCs, oxidatively modified one was not supportive. The SUM159 cell cultures were further exposed to a supraphysiological (35 µM) dose of the major bioactive lipid peroxidation product 4-hydroxynonenal (HNE), a well known as 'second messenger of free radicals', which has a strong affinity to bind to proteins and acts as a cytotoxic or as growth regulating signaling molecule. Native collagen, but not oxidised, abolished cytotoxicity of HNE, while oxidized collagen did not reduce cytotoxicity of HNE at all. These preliminary findings indicate that beside direct cytotoxic effects of anticancer therapies consequential oxidative stress and lipid peroxidation modify the microenvironment of CSCs influencing oxidative homeostasis that could additionally act against cancer.
EN
Liver is a unique mammalian organ with a great capacity of regeneration related to its function. After surgical resection or injury, hepatic cells, especially hepatocytes, can proliferate rapidly to repair the damage and to regenerate the structure without affecting the function of the liver. Loss of catalase activity during regeneration indicates that oxidative stress is present in the liver not only in pathological conditions but also as a 'physiological' factor during regeneration. As we have shown in our previous work, liver stem cell-like cells treated with 4-hydroxynonenal (HNE), a cytotoxic and growth regulating lipid peroxidation product, recover in the presence of spleen cells. In the current study we characterized this novel cell line as liver-derived progenitor/oval-like cells, (LDP/OCs), i.e. functional liver stem-like cells. We showed that LDP/OC were OV6 positive, with abundant glycogen content in the cytoplasm and expressed α-fetoprotein, albumin, biliverdin reductase and γ-glutamyl transferase. Also, we compared their growth in vitro with the growth of cultured primary hepatocytes stressed with HNE and co-cultured with autologous spleen cells. The influence of spleen cells on HNE-treated primary hepatocytes and on LDP/OCs showed that spleen cells support in a similar manner the recovery of both types of liver cells indicating their important role in regeneration. Hence, LDP/OC cells may provide a valuable tool to study cell interactions and the role on HNE in liver regeneration.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.