Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
2008
|
vol. 55
|
issue 1
51-56
EN
This report presents purification and characterization of the extracellular domain of rat Fas protein, called FIP (FasL interfering protein), expressed as inclusion bodies in Escherichia coli. FIP was extracted from the inclusion bodies, solubilized with 8 M urea, purified by a single-step immobilized metal ion (Ni2+) affinity chromatography and refolded. SDS/PAGE and mass spectrometry analysis of the purified protein verified its purity. Fluorescence spectrum analysis showed that the refolding procedure caused structural changes which presumably might have led to oligomerization. The purified FIP has biological activities: it binds specifically soluble Fas ligand and protects human Jurkat lymphocytes against FasL-dependent apoptosis. This efficient procedure of FIP expression in E. coli and renaturation may be useful for production of therapeutically important proteins.
EN
The expression of cyclin E gene (CCNE) in relation to the expression of its major regulatory protein, E2F1, was examined in clear cell renal cell carcinomas (ccRCC). We show that the overexpression of E2F1 is accompanied by the significant increase of the mean amounts of cyclin E mRNA, as well as of total cyclin E protein and its low molecular weight forms in cancer tissues as compared to peritumoral controls. A significant increase of the mean amount of total cyclin E was found in peritumoral tissues compared to cancer-free kidneys, suggesting that cancer cells might secrete factors having a profound influence on the metabolism of neighbouring tissues. A significant, positive correlations between E2F1 protein and total cyclin E mRNA, as well as between E2F1 protein and full length cyclin E protein were found in cancer-free kidneys and in peritumoral tissues, but not in ccRCCs. The overexpression of cyclin E positively correlated with the decreasing degree of tumor differentiation, implicating a role for cyclin E in the promotion of tumorigenesis.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.