Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Activated carbon obtained from bamboo waste was synthesised and modified with iron (BAC-Fe) and used for the removal of arsenic from aqueous solutions. Two different adsorption models were used for analysing the data. The adsorption capacities were determined for BAC-arsenite, BAC-Fe-arsenite, BAC-arsenate and BAC-Fe-arsenate, with a qmax (µg g−1) of 14.89, 19.19, 22.32 and 27.32 respectively. Adsorption capacity varied as a function of pH and modifications to the sorbent. Adsorption isotherms from an aqueous solution of arsenite and arsenates on activated carbons were determined. These adsorption isotherms were consistent with the Langmuir and Freundlich adsorption models. Adsorption kinetics followed a pseudo-first order rate equation, as did the kinetics for BAC-Fe-arsenite and BAC-Fe-arsenate adsorption. [...]
2
81%
EN
Activated carbon monoliths with different surface characteristics were prepared by impregnating oil palm stone with diluted aqueous CaCl2 solutions (with concentrations between 2 and 7% w/v) without binders. The solids were characterized by determination of nitrogen adsorption isotherms at 77 K and carbon dioxide adsorption isotherms at 273 K using volumetric adsorption equipment. Surface area and micropore volume values were calculated from the nitrogen isotherms using the BET and DR models, respectively, obtaining solids with low percentages of mesoporosity. Immersion enthalpies of the activated carbon monoliths were determined in benzene, with values between -173 and -104 J g-1, and water, with values between 61 and 30 J g-1, indicating that the monoliths have a hydrophobic character.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.