Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Weak Antilocalization in Quantum Wells

100%
EN
Spin relaxation in degenerated two-dimensional (2D) electron gas is studied by measurements of the magnetic field dependence of the weak an­tilocalization corrections to the conductivity in GaInAs quantum wells. Con­sistent quantitative (up to order of magnitude) description of weak antilocal­ization data on GaAs like heterojunctions and quantum wells was obtained. Our results show that spin precession around the effective magnetic field direction as described by the Dyakonov-Perel model is the main spin relax­ation mechanism in degenerated 2D electron gas in semiconductors with no inversion symmetry.
2
43%
EN
The primary goal of the Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) collaboration is to measure for the first time precisely the gravitational acceleration of antihydrogen, H̅, a fundamental issue of contemporary physics, using a beam of antiatoms. Indeed, although indirect arguments have been raised against a different acceleration of antimatter with respect to matter, nevertheless some attempts to formulate quantum theories of gravity, or to unify gravity with the other forces, consider the possibility of a non-identical gravitational interaction between matter and antimatter. We plan to generate H̅ through a charge-exchange reaction between excited Ps and antiprotons coming from the Antiproton Decelerator facility at CERN. It offers the advantage to produce sufficiently cold antihydrogen to make feasible a measurement of gravitational acceleration with reasonable uncertainty (of the order of a few percent). Since the cross-section of the above reaction increases with n⁴, n being the principal quantum number of Ps, it is essential to generate Ps in a highly excited (Rydberg) state. This will occur by means of two laser excitations of Ps emitted from a nanoporous silica target: a first UV laser (at 205 nm) will bring Ps from the ground to the n=3 state; a second laser pulse (tunable in the range 1650-1700 nm) will further excite Ps to the Rydberg state.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.