Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Spinocerebellar ataxias (SCAs) are a group of neurodegenerative disorders caused by dynamic mutations of microsatellite repeats. Two novel forms of SCAs have been described recently: SCA8, with expansions of CTA/CTG repeats in 3?UTR of the SCA8 gene, and SCA12, caused by expansion of the CAG tract in 5?UTR of the SCA12/PP2R2B gene. Analysis of CTA/CTG and CAG polymorphism in those two genes was performed in a Polish control group consisting of 100 individuals without any neurological signs. The distribution and ranges of the number of non-pathogenic repeats were similar to those observed in other populations described previously. Expansion of CTA/CTG repeats in the SCA8 locus was found in 2 of 100 controls and in 5 probands among 150 pedigrees affected with unidentified ataxias. As such expanded alleles were also observed in their healthy relatives, the pathogenic role of expansions in the SCA8 gene remains uncertain.
EN
Autosomal dominant hypercholesterolemia (ADH) is caused by mutations in the genes coding for the low-density lipoprotein receptor (LDLR), apolipoprotein B-100 (APOB), or proprotein convertase subtilisin/kexin type 9 (PCSK9). In this study, a molecular analysis of LDLR and APOB was performed in a group of 378 unrelated ADH patients, to explore the mutation spectrum that causes hypercholesterolemia in Poland. All patients were clinically diagnosed with ADH according to a uniform protocol and internationally accepted WHO criteria. Mutational analysis included all exons, exon-intron boundaries and the promoter sequence of the LDLR, and a fragment of exon 26 of APOB. Additionally, the MLPA technique was applied to detect rearrangements within LDLR. In total, 100 sequence variations were identified in 234 (62%) patients. Within LDLR, 40 novel and 59 previously described sequence variations were detected. Of the 99 LDLR sequence variations, 71 may be pathogenic mutations. The most frequent LDLR alteration was a point mutation p.G592E detected in 38 (10%) patients, followed by duplication of exons 4?8 found in 16 individuals (4.2%). Twenty-five cases (6.6%) demonstrated the p.R3527Q mutation of APOB. Our findings imply that major rearrangements of the LDLR gene as well as 2 point mutations (p.G592E in LDLR and p.R3527Q in APOB) are frequent causes of ADH in Poland. However, the heterogeneity of LDLR mutations detected in the studied group confirms the requirement for complex molecular studies of Polish ADH patients.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.