A convenient methodology was developed for a very accurate calculation of 13C NMR chemical shifts of the title compounds. GIAO calculations with density functional methods (B3LYP, B3PW91, PBE1PBE) and 6-311+G(2d,p) basis set predict experimental chemical shifts of 3-ethynylcyclopropene (1), 1-ethynylcyclopropane (2) and 1,1-diethynylcyclopropane (3) with high accuracy of 1–2 ppm. The present article describes in detail the effect of geometry choice, density functional method, basis set and effect of solvent on the accuracy of GIAO calculations of 13C NMR chemical shifts. In addition, the particular dependencies of 13C chemical shifts on the geometry of cyclopropane ring were investigated.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.