Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2009
|
vol. 7
|
issue 1
114-122
EN
The similarity solution for the steady two-dimensional flow of an incompressible viscous and electrically conducting fluid over a non-linearly semi-infinite stretching sheet in the presence of a chemical reaction and under the influence of a magnetic field gives a system of non-linear ordinary differential equations. These non-linear differential equations are analytically solved by applying a newly developed method, namely the Homotopy Analysis Method (HAM). The analytic solutions of the system of non-linear differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. Graphical results are presented to investigate the influence of the Schmidt number, magnetic parameter and chemical reaction parameter on the velocity and concentration fields. It is noted that the behavior of the HAM solution for concentration profiles is in good agreement with the numerical solution given in reference [A. Raptis, C. Perdikis, Int. J. Nonlinear Mech. 41, 527 (2006)].
Open Physics
|
2010
|
vol. 8
|
issue 4
523-526
EN
In this paper, we obtain some new explicit travelling wave solutions of the perturbed KdV equation through recent factorization techniques that can be performed when the coefficients of the equation fulfill a certain condition. The solutions are obtained by using a two-step factorization procedure through which the perturbed KdV equation is reduced to a nonlinear second order differential equation, and to some Bernoulli and Abel type differential equations whose solutions are expressed in terms of the exponential andWeierstrass functions.
EN
In this paper, a new computational algorithm called the "Improved Bernoulli sub-equation function method" has been proposed. This algorithm is based on the Bernoulli Sub-ODE method. Firstly, the nonlinear evaluation equations used for representing various physical phenomena are converted into ordinary differential equations by using various wave transformations. In this way, nonlinearity is preserved and represent nonlinear physical problems. The nonlinearity of physical problems together with the derivations is seen as the secret key to solve the general structure of problems. The proposed analytical schema, which is newly submitted to the literature, has been expressed comprehensively in this paper. The analytical solutions, application results, and comparisons are presented by plotting the two and three dimensional surfaces of analytical solutions obtained by using the methods proposed for some important nonlinear physical problems. Finally, a conclusion has been presented by mentioning the important discoveries in this study.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.