Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
After initial learning, a one-finger key stroke sequence, defined by a specific relative timing pattern (temporal structure) and absolute total movement time (temporal parameter), was practiced (with KR provided) either under dual-task conditions (experimental group), or under single-task conditions (control group). During dual-task practice, the key stroke sequence (i.e., the primary-task) was always executed in parallel to one of two cognitively demanding secondary tasks (subtracting numbers, or sorting marbles). Secondary tasks were alternated every 20 practice trials. Before (Pre-test) and after practice (Post-test), performance in each group was assessed under single-task and under dual-task conditions (no KR during tests). From Pre- to Post-test, primary-task performance in both groups significantly increased (relative timing in particular). Also, after practice dual-task costs found during Pre-test in both groups were still prevalent in the control group, but completely vanished in the experimental group with respect to those task combinations that were practiced before. However, when a new secondary task (repeating letters) was introduced, dual-task costs fully reappeared in the experimental group with respect to relative timing of the key stroke sequence. These results contradict the notion of readily acquiring automatic control in the course of dual-task practice by "Structural Displacement" (Blischke & Reiter, 2002), but they are well in line with the concept of developing cognitive strategies for "Integrated Task Processing" (Manzey, 1993). Thus, impact of dual-task practice on motor sequence production may be different from that on motor parameter control. In this context, implications of recent findings from neuropsychology on cortical systems engaged in the pursuit of concurrent behavioural goals (cf. Charron & Koechlin, 2010) are discussed.
EN
During the recent years it has been shown repeatedly that, after initial learning, elapse of time preserves, but sleep enhances performance in procedural motor skills. To date, however, the majority of experimental studies in this area employed some sort of a sequential finger tapping skill as a criterion task. Thus it is unclear yet, if any (and which) other types of motor skills do indeed benefit from sleep. In order to answer this question, and to provide theoretical statements about the memory system regarding benefits of sleep in motor learning, we carried out a series of studies following a "multi-task research strategy". Although we successfully replicated sleep-related improvements in the production of newly acquired sequential finger skills (FT-Task) under different learning conditions (i.e., guided or unguided), we did not find any such effect of sleep in discrete motor tasks requiring precise production of (a) a specific relative timing pattern (Diamond Tapping-Task), or (b) a sub-maximal force impulse (vertical Counter Movement Jump), and we also failed to find any specifically sleep-related effects on subsequent performance in (c) a continuous visuo-motor pursuit-tracking task. These results are considered in relation to other work, and the respective theoretical implications are discussed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.