Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Anthropogenic activities, such as high-altitude flights and living in buildings, have enhanced the public exposure to natural radiation. In particular, 40K and radionuclides belonging to 232Th and 238U decay chains are present even in building materials, and they may be considered as partially responsible for the effective dose coming from natural radioactivity. Scientists and governments have devoted great attention to the evaluation of the effects produced on the public by naturally occurring radionuclides. In this context, to evaluate the building materials acceptability, accurate and reliable methods for the measurement of the specific activity of natural radioactive isotopes in building materials have been developed. This paper aims to provide a clear and exhaustive review on natural radionuclide measurement procedures. Several standard national normatives (Dutch NEN 5697, Italian UNI 10797, Polish ITB 455), based on gamma spectrometry, have been considered and some critical issues were identified regarding the preparation and the radiometric measuring of the samples. Therefore, the direct measurement of 238U and 232Th by ICP-MS spectrometry as well as the extrapolation of the specific activities without waiting for secular equilibrium have been considered as two promising alternative approaches.
2
76%
EN
The development of effective processes to recover minor actinides from spent nuclear fuel cannot leave out of consideration the evaluation of the impact of ionizing radiations on safety, fluid dynamics and extraction efficiency. It is common knowledge from the literature that radiation damage mainly affects the diluents and, indirectly, the extractants [1], but a lack of knowledge remains regarding the radiolytic behavior of innovative selective actinide extraction (i-SANEX) diluents [2, 3]. As natural prosecution of the work already performed on diluted nitric acid solutions [4], 0.44 M nitric acid solutions were irradiated in contact with a mixture of kerosene + 5 vol.% 1-octanol by a Co-60 source at 2.5 kGy/h dose rate and up to 100 kGy absorbed dose, conditions of interest for the future industrial facility. Density, viscosity, acidity, nitrate anion concentration and phase transfers were systematically measured before and after γ-irradiation. This was performed because radiation-induced modifications of these parameters may induce alterations of both the fluid dynamics and the separation performances of the extracting system. The results suggest that the fluid-dynamics of the system should be unaltered. In fact, only slight alterations of the organic phase viscosity and of the aqueous phase acidity were measured after irradiation, suggesting the occurrence of limited phase transfers and of diluent by-products formation.
EN
The Fricke xylenol orange (FX) gel system is a chemical dosimeter characterized by good sensitivity, linear dose response, tissue equivalence, no toxicity, easy preparation, reproducibility and low cost. Thanks to the presence of the gelatinous matrix, the system is particularly suitable to perform reliable 3D mapping of the absorbed dose spatial distribution via magnetic resonance imaging (MRI) or optical techniques. The aim of this work is to study in a systematic way the influence of the pre-irradiation storage procedure upon sensitivity, dose response stability and lifetime of use of a FX gel system made with gelatin from porcine skin subjected to homogeneous irradiation. For this purpose, different pre-irradiation storage procedures, in terms of temperature and duration of each storage step, were investigated. In order to evaluate the dose response stability, the optical analyses of the samples were performed up to 6 hours after irradiation. Moreover, the samples were irradiated at time intervals of 24 hours for up to 7 days after preparation in order to evaluate the system lifetime of use. Regardless of their thermal and temporal life, the samples show linear dose responses in the investigated dose range (3-24 Gy) and an increase of sensitivity with the time elapsed between preparation and irradiation. Among the three pre-irradiation storage procedures considered here, a procedure that provides the best dose response stability and lifetime of use was identified and recommended for further use. The analyzed dosimetric system possesses good properties that make it promising for medical application, particularly concerning the evaluation of pre-treatment plan quality assurance within the conformational external beam radiotherapy
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.