Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2008
|
vol. 6
|
issue 2
372-384
EN
The exact and analytic Green functions for spinning relativistic particles in interaction with a gravitational plane wave field are obtained within the Stochastic Quantization Method of Parisi and Wu. We have separated the classical calculations from those related to the quantum fluctuations. The problem has been solved by using a perturbative treatment via the Langevin equation relying on phase and configuration spaces formulation.
Open Physics
|
2014
|
vol. 12
|
issue 6
392-405
EN
The problem of normalization related to a Klein-Gordon particle subjected to vector plus scalar energy-dependent potentials is clarified in the context of the path integral approach. In addition the correction relating to the normalizing constant of wave functions is exactly determined. As examples, the energy dependent linear and Coulomb potentials are considered. The wave functions obtained via spectral decomposition, were found exactly normalized.
3
100%
EN
The Green function for a Dirac particle subject to a plane wave field is constructed according to the path integral approach and the Barut’s electron model. Then it is exactly determined after having fixed a matrix U chosen so that the equations of motion are those of a free particle, and by using the properties of the plane wave and also with some shifts.
Open Physics
|
2010
|
vol. 8
|
issue 4
562-573
EN
The one-dimensional path decomposition expression for the step potential and mass is formulated. The propagator is analytically determined and the limiting case m 1; m 2 → m is exactly obtained.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.