Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Interactions among excitons, trions, and electrons are studied in CdTe modulation-doped quantum wells. These many-body interactions are investigated through the nonlinear dynamical properties in the excitonic complexes using time and spectrally resolved pump and probe techniques. This study is performed as a function of temperature and densities of excitons, trions, and electrons. The results reveal that the nonlinearities induced by trions differ from those induced by excitons and moreover they are mutually correlated. The correlated behavior of excitons and trions manifests itself by crossed trion-exciton effects. We propose that the main source of these correlations is due to the presence of electrons in the quantum well and that its physical origin is the Pauli exclusion-principle. We find that, at 5 K, trions are formed from excitons within 10 ps; at 20 K a thermal equilibrium is reached within 5 ps.
EN
Photoluminescence of p-type modulation doped (Cd,Mn)Te quantum wells is studied with carrier density up to 5×10^{11} cm^{-2} at various spin splittings. This splitting can be made larger than the characteristic energies of the system thanks to the giant Zeeman effect. At small spin splitting and regardless of the carrier density, the photoluminescence exhibits a single line, which corresponds to the charged exciton in the singlet state. Above a certain spin splitting, the charged exciton is destabilized in favor of the exciton at vanishing hole density, and in favor of a double line at higher carrier density. It is found here that the charged exciton destabilization energy hardly depends on the carrier density. The double line is found to be band-to-band like, with the same initial state - where the holes have the same spin orientation - and final states that differ by some excitation of the 2D hole gas. In addition, the spin splitting needed to fully polarize the hole gas is twice smaller than expected from the single particle image and gives a unique insight into many-body effects in the hole gas.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.