Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Photon's Structure of Motion

100%
EN
A free photon Hamiltonian is linearized using Pauli's matrices. Based on the correspondence of Pauli's matrices kinematics and the kinematics of spin operators, it has been proved that a free photon integral of motion is a sum of orbital momentum and spin momentum for a half-one spin. Linearized Hamiltonian represents a bilinear form of products of spin and momentum operators. Unitary transformation of this form results in an equivalent Hamiltonian, which has been analyzed by the method of Green's functions. The evaluated Green function has given possibility for interpretation of photon reflection as a transformation of photon to antiphoton with energy change equal to double energy of photon and for spin change equal to Dirac's constant. Since photon is relativistic quantum object the exact determining of its characteristics is impossible. It is the reason for series of experimental works in which photon orbital momentum, which is not integral of motion, was investigated. The exposed theory was compared to the mentioned experiments and in some elements the satisfactory agreement was found.
EN
Spectra of possible phonon states, as well as thermodynamic characteristics of nanocrystals (ultrathin film and quantum wire) of simple cubic crystalline structure are analyzed in this paper, using the method of two-time dependent Green functions. From energy spectra and internal energy of the system the thermal capacitance of these structures in low temperature region is found. The temperature behavior of specific heat is compared to that of corresponding bulk structure. It is shown that at extremely low temperatures thermal capacitance of quantum wire is considerably lower than the thermal capacitance of film as well as the bulk sample. Consequences of this fact are discussed in detail and its influence to thermodynamic properties of materials is estimated.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.