Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Oxidation of isatins (isatin, 5-methylisatin, 5-bromoisatin and 5-nitroisatin) to their anthranilic acids was performed efficiently with sodium N-chlorobenzenesulfonamide or chloramine-B (CAB) in alkaline medium at 35±0.1°C. The reactions follow identical kinetics for all the isatins, being first-order dependence each in [CAB]o and [Isatin]o and inverse fractional-order on [NaOH]. Addition of halide ions and benzenesulfonamide, reduction product of CAB, do not significantly affect the rate. Variation of ionic strength of the medium had no effect on the rate, while the dielectric effect is negative. The solvent isotope effect was studied using D2O. Activation parameters for the overall reaction have been computed. The rates satisfactorily correlate with the Hammett σ relationship and the reaction constant ρ is −0.31 signifies that electron releasing groups accelerate the reaction while the electron withdrawing groups retard the rate. Values of ΔH≠ and ΔS≠ are linearly related and an isokinetic relationship is observed with β=376 K, indicating the reaction is controlled by enthalpy. The stoichiometry of the title reaction is found to be 1∶1. Oxidation products of isatins were identified as their corresponding anthranilic acids and the yields were found to be around 90 %. The observed results have been explained by a plausible mechanism and the related rate law deduced. This method offers several advantages including high yield of the products, short reaction times, easier isolation of products, and stable, cost effective and relatively non-toxic reagents, which make the reaction process simple and smooth.
EN
The kinetics of the oxidation of five catecholamines viz., dopamine (A), L-dopa (B), methyldopa (C), epinephrine (D) and norepinephrine (E) by sodium N-chloro-p-toluenesulfonamide or chloramine-T (CAT) in presence of HClO4 was studied at 30±0.1 °C. The five reactions followed identical kinetics with a first-order dependence on [CAT]o, fractional-order in [substrate]o, and inverse fractional-order in [H+]. Under comparable experimental conditions, the rate of oxidation of catecholamines increases in the order D>E>A>B>C. The variation of ionic strength of the medium and the addition of p-toluenesulfonamide or halide ions had no significant effect on the reaction rate. The rate increased with decreasing dielectric constant of the medium. The solvent isotope effect was studied using D2O. A Michaelis-Menten type mechanism has been suggested to explain the results. Equilibrium and decomposition constants for CAT-catecholamine complexes have been evaluated. CH3C6H4SO2NHCl of the oxidant has been postulated as the reactive oxidizing species and oxidation products were identified. An isokinetic relationship is observed with β=361 K, indicating that enthalpy factors control the reaction rate. The mechanism proposed and the derived rate law are consistent with the observed kinetics.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.