Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Cervical carcinogenesis is a complex problem with papillomavirus widely accepted as a causative agent. Integration of a human papillomavirus (HPV) of the high-risk type into the host cell genome is one of the major contributing factors to cervical malignant transformation. In this study, the correlation of CMV, EBV, HSV-1, HSV-2, HHV-6 and HHV-7 infections with the physical status of the HPV genome in cervical cancer and precancerous cervical lesions was investigated in sixty HPV-16-positive women. Cervical secretion samples were submitted to DNA extraction and analyzed by PCR. HPV-16 DNA was confirmed in genotyping with the reverse hybridization line probe assay. Multiplex PCR with specific primers for the E2/E6 genes was used to assess the viral integration status of HPV-16. Our results show that CMV DNA was more frequently present in samples with mixed forms of HPV-16 than in the episomal form (P < 0.025). Such a correlation was also observed in the case of EBV (P < 0.005). The presence of CMV resulted in a six-fold (OR 6.069; 95% CI 1.91-19.22; P = 0.002), while EBV caused a seven-fold (OR 7.11; 95% CI 1.70-29.67; P = 0.007) increase in the risk of the integrated or mixed HPV-16 genome occurrence. Our data suggest that coinfection with herpesviruses, especially CMV and EBV, may be involved in the integration of the HPV-16 genome and may contribute to the development of cervical cancer.
|
2006
|
vol. 53
|
issue 3
457-461
EN
In situ PCR and in situ reverse transcription PCR (RT-PCR) were applied to discriminate between latent and productive infection of human cytomegalovirus (HCMV) in leukocytes. We investigated 28 samples, in which viral pp65 antigen was detected only in the cytoplasm of leukocytes. Additionally we assayed 12 specimens lacking pp65 antigen. Using nested PCR (nPCR), viral DNA was detected in 27 samples. In six samples the results of nPCR were unreadable due to the presence of polymerase inhibitors. By application of in situ PCR, we were able to confirm the presence of viral DNA in the nucleus and/or cytoplasm. Productive infection was recognized in 20 samples in which transcripts for late viral genes were detected. Among the 20 samples negative by in situ RT-PCR, we recognized phagocytosis of viral particles in eight and the latent form of HCMV infection in five.
EN
Human cytomegalovirus (HCMV) infection remains the leading cause of serious contagious complications after allogeneic hematopoietic stem cell transplantation. These infections in HCMV-seropositive recipients can be due to reactivation or reinfection. Different HCMV strains were identified by determining the genotypes isolated from repeatedly tested patients. The UL55 sequences encoding viral glycoprotein B (gB) have been chosen as the target gene. The region, in which the gB precursor protein is cleaved into two fragments by a cellular endoprotease, is characterized by genetic variability, and based on that HCMV is classified into four major genotypes: gB1, gB2, gB3 and gB4. Multiplex real-time PCR assay enabled both, HCMV gB genotyping, as well as simultaneous quantitative assessment of the detected genotypes. This study was carried out in 30 transplant recipients, from whom 105 isolates of HCMV DNA were genotyped. In 40% of recipients, a mixed infection with two or three genotypes was detected. Genotype gB1 dominated in general, and characteristically for mixed infections, the genotype gB3 or gB4 was always present. Although there were no significant differences in the load for each genotype, in case of multiple infections, the number of copies of gB1 genotype was significantly higher when compared to a single gB1 infection. In patients with mixed genotypes, chronic HCMV infections and graft versus host disease were observed more often, as well as antiviral treatment was less effective. It was assumed that these adverse effects can be related to the presence of gB3 and gB4 genotypes.
EN
Epstein-Barr virus (EBV), a member of the family Herpesviridae, is widely spread in the human population and has the ability to establish lifelong latent infection. In immunocompetent individuals the virus reactivation is usually harmless and unnoticeable. In immunocompromised patients productive infection or type III latency may lead to EBV-associated post-transplant lymphoproliferative disorder (PTLD). The aim of our research was to investigate the utility of PCR-based methods in the diagnosis and monitoring of EBV infections in bone marrow transplant recipients. Thirty-eight peripheral blood leukocyte samples obtained from 16 patients were analysed, in which EBV DNA was confirmed by PCR. We used semi-quantitative PCR to estimate the viral load and reverse-transcription PCR (RT-PCR) to differentiate between latent and productive EBV infection. In 14 patients we confirmed productive viral infection. We observed a correlation between higher number of EBV genome copies and the presence of transcripts specific for type III latency as well as clinical symptoms.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.