Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
The bond valence model was used to study the stability of the non-stoichiometric LaO_{1-x}F_{1+2x} phases, the solid solubility in the (La_{1-x}Gd_{x}) OCl system and the phase transformation in the REOCl (RE^{3+}=La^{3+} -Nd^{3+}, Sm^{3+}-Gd^{3+}, Ho^{3+}, and Y^{3+}) series. The stability of the non-stoichiometric LaO_{1-x}F_{1+2x} (0 ≤ x ≤ 0.3) phase decreases with increasing excess fluoride. The global instability index values close to 0.2 indicate the instability of the non-stoichiometric phase. The relative stability of the (La_{1-x}Gd_{x})OCl (0 ≤ x ≤ 1.0) solid solutions achieved its minimum in the middle of the series. However, the X-ray powder diffraction results indicated complete solid solubility in the whole (La_{1-x}Gd_{x})OCl series and no phase separation was observed. The bond valence model was used to explain the structural transformation from the tetragonal oxychlorides, REOCl (RE = La-Er, and Y), to hexagonal beyond ErOCl. The calculated global instability index values did not show any clear trend across the REOCl series probably due to the inaccuracies and incoherencies in the original structural data.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.