Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
microRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression by targeting specific mRNAs. microRNAs play a role in several physiological processes in the cell, including migration, proliferation, differentiation and apoptosis. Apart from their role in regular metabolism, abnormal profiles of miRNA expression accompany cancer transformation, including colorectal cancer (CRC) metastasis. microRNAs may play a role in each phase of CRC metastasis including angiogenesis, invasion, intravasation, circulation, extravasation and metastatic colonization. microRNA levels may serve as a predictive CRC marker, which was confirmed by the serum level of miR-29a targeting KLF4, a marker of cell stemness, and the plasma level of miR-221 down-regulating c-Kit, Stat5A and ETS1, which are signal transducers and transcription factor, respectively. In turn, the level of miR-143 in CRC cells decreasing the amount of MACC1 (metastasis-associated in colon cancer-1) and oncogenic KRAS protein, may be utilized as a prognostic marker. Also, single nucleotide polymorphisms of genes encoding miRNAs, including miR-423 and miR-608, which correlate with tumor recurrence, may be useful as diagnostic, prognostic and predictive indicators in CRC metastasis. Pre-miR-34a and pre-miR-199a decreased the level of Axl, a tyrosine-protein kinase receptor, so they can be considered as drugs in antimetastatic therapy. On the other hand, miR-222 targeting ADAM-17, a disintegrin and metalloproteinase, and miR-328 interacting with ABCG2, an ABC transporter, may overcome drug resistance of cancer cells. microRNAs may be considered in wide-range application to facilitate CRC metastasis diagnosis, prognosis, prediction and therapy, however, further clinical, epidemiological and in vitro studies should be conducted to verify their utility.
2
Content available remote

Role of mitochondria in carcinogenesis

100%
EN
Mitochondria play the central role in supplying cells with ATP and are also the major source of reactive oxygen species (ROS) - molecules of both regulatory and destructive nature. Dysfunction of mitochondrial metabolism and/or morphology have been frequently reported in human cancers. This dysfunction can be associated with mitochondrial DNA (mtDNA) damage, which may be changed into mutations in mtDNA coding sequences, or the displacement-loop region, changes in the mtDNA copy number or mtDNA microsatellite instability. All these features are frequently associated with human cancers. Mutations in mtDNA can disturb the functioning of the ROS-producing organelle and further affect the entire cell which may contribute to genomic instability typical for cancer cells. Although the association between some mtDNA mutations and cancer is well established, the causative relationship between these two features is largely unknown. A hint suggesting the driving role of mtDNA mutations in carcinogenesis comes from the observation of tumor promotion after mtDNA depletion. Mitochondria with damaged DNA may alter signaling of the mitochondrial apoptosis pathway promoting cancer cell survival and conferring resistance to anticancer drugs. This resistance may be underlined by mtDNA copy number depletion. Therefore, mitochondria are considered a promising target in anticancer therapy and several mitochondria-targeting drugs are in preclinical and clinical trials. Some other aspects of mitochondrial structure and functions, including morphology and redox potential, can also be associated with cancer transformation and constitute new anticancer targets. Recently, several studies have disclosed new mechanisms underlying the association between mitochondria and cancer, including the protection of mtDNA by telomerase, suggesting new approaches in mitochondria-oriented anti-cancer therapy.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.