Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

TP53 and mutations in human cancer.

100%
|
2003
|
vol. 50
|
issue 1
231-238
EN
TP53 is the most frequently mutated gene in human cancer, with a predominance of missense mutations scattered over 200 codons. In many cancers, specific mutation patterns can be identified, which are shaped by site-specific mutagenesis and by biological selection. In tobacco-related cancers (lung, head and neck), organ-specific patterns are observed, with many mutations compatible with the ones experimentally induced by tobacco carcinogens. In several other cancers, such as squamous cell carcinoma of the oesophagus or hepatocellular carcinoma (HCC), mutation patterns show geographic variations between regions of high and low incidence, suggesting a role for region-specific risk factors. HCC from high-incidence regions showing also a high prevalence of a specific Ser-249 TP53 mutation is one of the most striking examples of a mutagen fingerprint. All such assessments are useful to generate clues on the mutagenic mechanisms involved in human cancer. Moreover, it has been shown that DNA retrieved from plasma can be successfully used for detection of TP53 mutations, which gives hope for earlier more accurate detection of human cancers.
2
Content available remote

Laccase Immobilisation on Mesostructured Silicas

81%
EN
Extracellular laccase produced by the wood-rotting fungus Cerrena unicolor was immobilised covalently on the mesostructured siliceous foam (MCF) and three hexagonally ordered mesoporous silicas (SBA-15) with different pore sizes. The enzyme was attached covalently via glutaraldehyde (GLA) or by simple adsorption and additionally crosslinked with GLA. The experiments indicated that laccase bound by covalent attachment remains very active and stable. The best biocatalysts were MCF and SBA-15 with Si-F moieties on their surface. Thermal inactivation of immobilised and native laccase at 80°C showed a biphasic-type activity decay, that could be modelled with 3- parameter isoenzyme model. It appeared that immobilisation did not significantly change the mechanism of activity loss but stabilised a fraction of a stable isoform. Examination of time needed for 90% initial activity loss revealed that immobilisation prolonged that time from 8 min (native enzyme) up to 155 min (SBA-15SF).
EN
In bioprocesses lipases are typically used in immobilized form, irrespective of type of reaction systems, to ensure an even distribution of catalysts in water restricted media and/or to facilitate separation and reuse. In these studies we report on the selection of appropriate enzyme-carrier preparation for hydrolysis reaction in aqueous and biphasic systems and transesterification in organic solvent. For this Candida rugosa lipase was bound by adsorption or covalent attachment onto various carriers to give 24 preparations. Selection of proper preparation was based on reactivity, thermal stability (4 h at 60°C), possibility of drying and operational stability in 17-23 successive batch processes of 4-nitrophenyl palmitate hydrolysis in water. Activity of preparations varied from 20 to 5100 U∙mL-1 but the most stable preparations were those of moderate activity: bound by adsorption or covalent attachment to NH2-Kieselgel or acrylic carrier (retained activity over 90%). Selected preparations were used for hydrolysis of ethyl (1-butyryloxyethyl)-phenylphosphinate in biphasic system, and, after drying, in ethyl (1-hydroxyethyl)-phenyl-phosphinate transesterification. In this study operational stability was the principal criterion of selection. In water system, lipase covalently bound to NH2-Kieselgel was the best - preserved 50% of initial activity in consecutive batch processes. In biphasic system and lipase covalently bound to acrylic and NH2-Kieselgel the values were 90 or 77%, respectively, whereas in organic solvent, when lipase was immobilized on NH2-Kieselgel by adsorption, it was 50%. Thus, NH2-Kieselgel appears to be an universal matrix for investigated lipase immobilization and can be used in all reaction systems.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.