Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The genus Paramecium has been known to science for 250 years and contains some of the most widely studied species of ciliates. At present, the basic research object for phylogenetic studies is the genome of various paramecia. One of the most widely used markers are genes coding for various rRNA's. Comparative analyses of sequences coding rRNA were applied for resolving the systematic position of some paramecia species and also for the establishment of an accurate taxonomy of Paramecium. Paramecia were also model organisms for their systematic group in more general studies in a comparative analysis among ciliates, fungi, plants and multicellular animals, illustrating the evolutionary relationships between Archaebacteria and Eucaryota. A new, revolutionary genealogy proposed the shifting of presumptively advanced groups towards more primitive ones, and traditionally primitive forms were located closer to highly specialized taxa, but rRNA analysis did not unambiguously resolve associations within the studied groups. Because of the aforementioned concerns, the number of molecular markers used for alternative studies is growing, such as genes coding proteins from the Hsp family or histone proteins. Other promising candidate markers may be hemoglobin genes or genes coding ?-tubulins. In case of comparative analyses of nucleotide sequences, the outcome of the research usually depends upon a subjective choice of DNA. One of the directions of research in molecular phylogenetics include indirect methods that allow for an estimation of entire genomes, for example RAPD-PCR-fingerprinting.
EN
A fragment of histone H4 gene (160 bp long) was sequenced in the standard strains of P. primaurelia (DQ067620), P. biaurelia (DQ067621), P. tetraurelia (DQ067622), P. pentaurelia (DQ067623), P. septaurelia (DQ067624), P. octaurelia (DQ067625), P. decaurelia (DQ067626), P. undecaurelia (DQ067627), P. dodecaurelia (DQ067628), P. tredecaurelia (DQ067629), and P. quadecaurelia (DQ067630). The tree constructed according to the Kimura model presents two main species clusters, one comprising P. undecaurelia, P. octaurelia, P. septaurelia, and the second cluster with P. pentaurelia, P. tredecaurelia, P. quadecaurelia, P. tetraurelia, P. decaurelia, P. primaurelia, P. biaurelia. P. dodecaurelia was recovered as a separate branch. The tree constructed on the basis of the maximum likelihood method also presents two species clusters, one with P. undecaurelia, P. octaurelia, P. septaurelia, and the second with P. primaurelia, P. decaurelia, P. pentaurelia, P. tredecaurelia, P. quadecaurelia, P. tetraurelia. P. biaurelia forms a basal clade to the latter cluster, and P. dodecaurelia was recovered as a clearly distinct branch from the clusters.
EN
The aim of the present study is to establish a common RAPD marker for P. jenningsi using a series of Ro primers and to investigate if strains originating from distant and isolated localities (Japan, China, India, Saudi Arabia) have isolated gene pools and represent distinct species. An analysis of dendrograms constructed on the basis of RAPD-PCR fingerprints with four primers (Ro 460-04, 460-06, 460-07, and 460-10) from the first part of this project (SKOTARCZAK et al. 2004), assigns the strains to two groups consisting of the continental strains (India, Saudi Arabia, China) and Japanese strains that have been considered as a separate sibling species within P. jenningsi. The genetic similarity of the Indian and Arabian strains was ascertained, whereas the Chinese strain formed an independent branch in this sibling species. The primers Ro (460-01, 460-02, 460-03, 460-05, 460-08) also distinguish between two groups of strains, although they divide the Japanese strains into two subgroups that are not reproductively isolated. This probably indicates genetic variation within this sibling species. However, it comprises one common gene pool (successful inter-strain crosses) and is reproductively isolated from the other sibling species. The results presented in these papers confirm that the construction of ten band patterns having marker attributes is possible on the basis ofDNAamplification from 9 strains of P. jenningsi with the RAPD-PCR fingerprinting method using five primers from the Ro series. The patterns can be assigned to three marker-groups: a general species group, a group differentiating between sibling species, and accessory strain markers.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.