Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The biomass of Curvularia lunata, used previously for hydrocortisone production, was investigated as a heavy metal biosorbent. Removal of lead, zinc and cadmium ions was evaluated as a function of biosorbent dosages, initial ion concentrations, mode of mycelium modifications, initial pH of metal solutions and when these metals ions where presented in binary as well in ternary combinations. The results presented in this paper indicate the potential utility of C. lunata waste biomass for lead and, to a lower extent, for zinc and cadmium ions removal from acid solutions.
EN
The aim of this study was to overproduce, identify and apply novel laccase-like multicopper oxidases (LMCOs) from Myrothecium roridum in a dye removal process. LMCOs' production was enhanced by modifying the medium and adding copper ions. After purification, two proteins, LMCO1 and LMCO2, with molecular masses of 46.7 and 66.3 kDa were discovered. Peptide analysis by mass spectrometry revealed that they belong to the cupredoxin superfamily. Characteristic peptide sequences were obtained for MCOs and bilirubin oxidases. Crude enzymes were applied in a dye decolorization process. Supplementation with 1 mM of vanillin allowed an almost complete elimination of the Indigo carmine within 3 hours. The dye was removed from a solution containing metals, surfactants and organic solvents. The in-gel assessment of the activity and decolorization ability of MCOs, followed by protein extraction and SDS-PAGE, confirmed that only LMCO2 was responsible for the dye removal. MCOs produced by Myrothecium sp. have been poorly studied before. The obtained results broaden knowledge on this subject and may contribute to the development of an eco-friendly method of dye elimination.
3
88%
EN
Nonylphenol (4-NP) is a xenobiotic classified as an endocrine disrupting compound with an ability to interfere with hormonal systems of numerous organisms including humans. It is widely distributed not only in aquatic but also in terrestrial systems. The aim of this study was to evaluate the ability of cosmopolitan fungus Metarhizium (commonly persistent in soil as a facultative insect pathogen, controlling populations of arthropods in natural environment) to degrade 4-n-nonylphenol. All isolates examined in this work were identified to a species rank based on five, independent genetic markers. Among eight Metarhizium strains; six of them have been identified as M. robertsii, and two others as M. brunneum and M. lepidiotae. All investigated Metarhzium isolates were found to eliminate 4-n-NP with significant efficiency (initial xenobiotic concentration 50 mg L-1). The degradation process was very effective and at 24h of incubation 50-90% of 4-n-NP was eliminated by certain strains, while extended incubation resulted in further utilization of this compound. At the end of the experiments 64-99% of 4-n-NP was removed from the culture medium. Additionally, in all tested cultures three major metabolites were detected: 4-hydroxybenzoic acid; 2-(4-hydroxyphenyl)acetic acid and 4-hydroxyphenylpentanoic acid. The obtained results indicate that Metarhizium sp. possesses an ability to degrade NP and can serve as a potential candidate for further biodegradation studies.
EN
In this work we compared the effect of five heavy metals: Zn, Pb, Cd, Ni and Cu on phospholipid composition of the ubiquitous soil fungus Paecilomyces marquandii, originating from a strongly metal polluted area and characterized by high tolerance to these elements. Cd, Ni and Cu caused an increase in phosphatidylcholine (PC). Only Pb decreased PC content, which was accompanied by a significant rise in the phosphatidic acids (PA) level, probably due to activation of phospholipase D which hydrolyzes PC to PA. This could result in membrane fluidity disturbance, and thus affect its integrity. The assessment of propidium iodide influx showed strong disturbance of membrane integrity for Cu and Pb stressed mycelia, whereas mycelia treated with Ni were impermeable to this dye. The results obtained revealed a strong Cu and Pb toxicity involving disruption of membrane integrity. Pb action was reflected by lipid composition, whereas changes in Cu treated mycelia did not completely elucidate its harmful effect on the membrane, which was most probably caused by Cu induced lipid peroxidation. Zn did not induce quantitative changes in PC and phosphatidylethanolamine (PE) but caused changes in phospholipid lipid saturation, which appears to be important for fungus adaptation to the presence of metals. The enhanced PC content balanced by higher PC saturation can help in the maintenance of proper membrane fluidity and result in alleviating the Cd and Ni induced stress. These results will allow to clarify the mechanism of Pb toxicity and help to elucidate the cellular basis of fungal membrane adaptation to heavy metals.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.