Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this study, the effect of phase change materials on the time lag, decrement factor and heat-saving is examined numerically. The calculations are conducted for four different cities located at different climatic zones in Turkey, considering both summer and winter conditions, in order to explore the potential heating and cooling energy savings by employing phase change materials. A solar-air temperature, which is a function of time and solar radiation, was taken into consideration as external boundary condition for each city. The results of the present study show that employment of phase change materials in walls of the buildings has a pronounced effect on the time lag and decrement factor. It is concluded that a significant amount of heating energy can be saved and thermal comfort can be enhanced considerably by incorporating phase change materials into external walls. However, a proper phase change material must be selected, considering different climatic conditions.
EN
In this study, the possibility of enhancing heat insulation performance of hollow bricks by filling the cavities with perlite is investigated. A conjugate heat transfer by conduction, convection and radiation in different hollow bricks are analyzed numerically to assess their thermal performance. Calculations are performed for three scenarios for each type of hollow brick: (i) cavities are filled with air, (ii) half of the cavities are filled with perlite while the other half is filled with air, (iii) all cavities are filled with perlite. The benefit of filling cavities with perlite is justified quantitatively for each investigated hollow brick type. It is concluded that the enhancement in insulation performance can be up to 15.6% and 27.5% for half-perlite and full-perlite cases, respectively, depending on the brick type.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.