Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In recent times the wavelet methods have obtained a great popularity for solving differential and integral equations. From different wavelet families we consider here the Haar wavelets. Since the Haar wavelets are mathematically most simple to be compared with other wavelets, then interest to them is rapidly increasing and there is a great number of papers,where thesewavelets are used tor solving problems of calculus. An overview of such works can be found in the survey paper by Hariharan and Kannan [1] and also in the text-book by Lepik and Hein [2]. The aim of the present paper is more narrow: we want to popularize our method of solution, which is published in 19 papers and presented in the text-book [2]. This method is quite universal, since a large group of problems can be solved by a unit approach. The paper is organised as follows. In Section 1 fundamentals of the wavelet method are described. In Section 2 the Haar wavelet method and solution algorithms are presented. In Sections 3-9 different problems of calculus and structural mechanics are solved. In Section 10 the advantageous features of the Haar wavelet method are summed up.
EN
This paper presents a comparison of commercially used German and Russian reactor pressure vessel steels from the positron annihilation spectroscopy point of view, having in mind knowledge obtained also from other techniques from the last decades. The second generation of Russian reactor pressure vessel steels seems to be fully comparable with German steels and their quality allows prolongation of NPP operating lifetime over projected 40 years. The embrittlement of CrMoV steels is very low due to the dynamic recovery of radiation-induced defects at reactor operating temperatures. Positron annihilation spectroscopy techniques can be effectively applied for evaluation of microstructural changes caused by extreme external loads by proton implantation, with aim to simulate irradiation and for the evaluation of the effectiveness of post-irradiation thermal treatments. We used our actual and previous results, collected during last 20 years from measurements of different reactor pressure vessel steels in "as received", irradiated and post-irradiation annealed state and compare them with the aim to contribute to general knowledge based on experimental positron annihilation spectroscopy data.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.