Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Gas sensor material was prepared by encapsulation of functionalized single-walled carbon nanotubes (SWCNT) into a gas-permeable polymer poly(1-trimethylsilyl-1-propyne) (PTMSP). A phenylhydrazino group was used for the functionalization of SWCNTs to improve their solubility and compatibility with polymers. Syntheses were carried out in aqueous surfactant solutions and in pure phenylhydrazine without surfactant. Two different temperatures (24 and 50°C) and two surfactants (sodium dodecyl sulfate and tricaprylmethylammonium chloride - Aliquat®336) were compared. Functionalized SWCNTs were characterized by X-ray photoelectron (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy. Analyses showed that the synthesis at higher temperature in pure phenylhydrazine resulted in the highest functionalization yield. Phenylhydrazine itself proved to be a good solvent for SWCNTs. The functionalized nanotubes were soluble in organic solvents that under the same conditions were appropriate solvents for polymers. The sensitivity of functionalized SWCNT-PTMSP thin film composite to NO2 gas at room temperature was significantly higher than that of the similar sensor material containing the pristine SWCNTs. [...]
2
84%
EN
The Raman spectroscopy method was used for structural characterization of TiO2 thin films prepared by atomic layer deposition (ALD) and pulsed laser deposition (PLD) on fused silica and single-crystal silicon and sapphire substrates. Using ALD, anatase thin films were grown on silica and silicon substrates at temperatures 125–425 °C. At higher deposition temperatures, mixed anatase and rutile phases grew on these substrates. Post-growth annealing resulted in anatase-to-rutile phase transitions at 750 °C in the case of pure anatase films. The films that contained chlorine residues and were amorphous in their as-grown stage transformed into anatase phase at 400 °C and retained this phase even after annealing at 900 °C. On single crystal sapphire substrates, phase-pure rutile films were obtained by ALD at 425 °C and higher temperatures without additional annealing. Thin films that predominantly contained brookite phase were grown by PLD on silica substrates using rutile as a starting material.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.