A blue-green emitting phosphor (Ba1.95, Eu0.05)ZnSi2O7: Bx3+ was prepared by combustion synthesis and an efficient blue-green emission under near-ultraviolet was observed. The luminescence, crystallinity and particle sizes were investigated by using luminescence spectrometry, X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The emission spectrum shows a single band centered at 503 nm, which corresponds to the 4f 65d 1 →4f 7 transition of Eu2+. The excitation spectrum is a broad band extending from 260 to 465 nm, which matches the emission of ultraviolet light-emitting diodes. The optical absorption spectra of the (Ba1.95, Eu0.05)ZnSi2O7: B0.063+ exhibited band-gap energies of 3.9 eV. The results showed that boric acid was effective in improving the luminescence intensity of (Ba1.95, Eu0.05)ZnSi2O7, and the optimum molar ratio of boric acid to zinc nitrate was about 0.06. The phosphor (Ba1.95, Eu0.05)ZnSi2O7: B0.063+ synthesized by combustion method showed 1.5 times improved emission intensity compared with that of the Ba1.95ZnSi2O7: Eu0.052+ phosphor under λex = 353 nm.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.