Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 1 | 97-102

Article title

Natural gas hydrate promotion capabilities of toluene sulfonic acid isomers

Content

Title variants

Languages of publication

EN

Abstracts

EN
The purpose of this study was to investigate the natural gas hydrate promotion capabilities of the hydrotrope Toluene Sulfonic Acid (TSA) isomers as an additive. The capabilities of TSA isomers were measured with different concentrations. The optimum additive concentration for hydrate formation was determined for the given pressure, temperature, mixing condition, and cooling time. The natural gas hydrate promotability of para-TSA was found to be 20% and 35% more than meta-TSA and ortho-TSA respectively at the optimum concentration. Beyond the optimum TSA concentration, the hydrate formation declined as the ice formation reduced the overall gas-to-water volume ratio in the hydrates

Publisher

Year

Volume

16

Issue

1

Pages

97-102

Physical description

Dates

published
1 - 03 - 2014
online
25 - 03 - 2014

Contributors

  • Sharif University of Technology, Department of Chemical and Petroleum Engineering, Tehran, Iran
  • Shiraz University, School of Chemical and Petroleum Engineering, Shiraz, Iran

References

  • 1. Benesh, M.E. (1942). U.S. Patent No. 2,270,016. Washington, D.C.: U.S. Patent and Trademark Office.
  • 2. Yevi, G.Y. & Rogers, R.E. (1996). Storage of fuel in hydrates for natural gas vehicles. J. Energy. Resour. Technol. 118(3), 209-213. DOI:10.1115/1.2793864.[Crossref]
  • 3. Zhong, Y. & Rogers, R.E. (2000). Surfactant effects on gas hydrate formation. Chem. Eng. Sci. 55(19), 4175-4187. DOI: 10.1016/S0009-2509(00)00072-5.[Crossref]
  • 4. Gudmundsson, J.S., Parlaktuna, M. & Khokhar, A.A. (1994). Storing natural gas as frozen hydrates. SPE Prod. Facil. 9(1), 69-73. DOI: 10.2118/24924-PA.[Crossref]
  • 5. Khokhar, A.A., Gudmundsson, J.S. & Sloan, E.D. (1998). Gas storage in structure H hydrates. Fluid. Phase. Equilibr. 150-151, 383392. DOI:10.1016/S0378-3812(98)00338-0.[Crossref]
  • 6. Javanmardi, J., Nasrifar, K., Najibi, S.H. & Moshfeghian, M. (2005). Economic evaluation of natural gas hydrate as an alternative for natural gas transportation. Appl. Therm. Eng. 25(11-12), 1708-1723. DOI: 10.1016/j.applthermaleng. 2004.10.009.[Crossref]
  • 7. Thomas, S. & Dawe, R.A. (2003). Review of ways to transport natural gas energy from countries which do not need the gas for domestic use. Energy 28(14), 1461-1477. DOI: 10.1016/S0360-5442(03)00124-5.[Crossref]
  • 8. Gudmundsson, J.S. & Borrehaug, A. (1996). Frozen hydrate for transport of natural gas. In Revelling in Reference: 2nd International Conference on Nature Gas Hydrate, 2-6 June 1996, 415-422, Toulouse, France
  • 9. Sloan, E.D. & Koh, C.A. (2008). Clathrate Hydrates of Natural Gases 3rd Edition. CRC Press.
  • 10. Vysniauskas, A. & Bishnoi, P.R. (1983). A kinetic study of methane hydrate formation. Chem. Eng. Sci. 38(7), 1061-1072. DOI: 10.1016/0009-2509(83)80027-X.[Crossref]
  • 11. Narita, H. & Uchida, T. (1996). Studies on formation/ dissociation rates of methane hydrates. In Revelling in Reference: 2nd International Conference on Nature Gas Hydrate, 2-6 June 1996, 191-197, Toulouse, France.
  • 12. Kwon, Y.A., Park, J.M., Jeong, K.E., Kim, C.U., Kim, T. W., Chae, H.J., Jeong, S.Y., Yim, J.H., Park, Y.K., Lee, J.D. (2011). Synthesis of anionic multichain type surfactant and its effect on methane gas hydrate formation. J. Ind. Eng. Chem. 17(1), 120-124. DOI:10.1016/j.jiec.2010.12.008.[WoS][Crossref]
  • 13. Park, S.S. & Kim, N.J. (2013). Study on methane hydrate formation using ultrasonic waves. J. Ind. Eng. Chem. 19(5), 1668-1672. DOI: 10.1016/j.jiec.2013.02.004.[Crossref]
  • 14. Kalogerakis, N., Jamaluddin, A.K.M., Dholabhai, P.D. & Bishnoi, P.R. (1993). Effect of Surfactants on Hydrate Formation Kinetics. In Revelling in Reference: SPE International Symposium on Oilfi eld Chemistry, 2-5 March 1993, 375-383. New Orleans, Louisiana, USA.
  • 15. Karaaslan, U. & Parlaktuna, M. (2000). Surfactants as Hydrate Promoters? Energy & Fuels. 14(5), 1103-1107. DOI: 10.1021/ef000069s.[Crossref]
  • 16. Sun, Z., Ma, R., Fan, S., Guo, K. & Wang, R. (2004). Investigation on Gas Storage in Methane Hydrate. J. Nat. Gas Chem. 13(2), 107-112.
  • 17. Karaaslan, U. & Parlaktuna, M. (2001). On the Dissociation of Natural Gas Hydrates from Surfactant Solutions. Energy & Fuels 15(1), 241-246. DOI:10.1021/ef000060q.[Crossref]
  • 18. Karaaslan, U., Uluneye, E. & Parlaktuna, M. (2002). Effect of an anionic surfactant on different type of hydrate structures. J. Petrol. Sci. Eng. 35(1-2), 49-57. DOI:10.1016/ S0920-4105(02)00163-8.[Crossref]
  • 19. Imai, S., Mori, Y.H. & Watanabe, K. (2005). Surfactant effects on hydrate formation in a quiescent gas/liquid system: an experimental study using HFC-32 as a structure-I former. In Revelling in Reference: 5th International Conference on Gas Hydrates, 13-16 June 2005, 347-359. Trondheim, Norway.
  • 20. Heidaryan, E., Salarabadi, A. Moghadasi, J. Dourbash, A. (2010). A new high performance gas hydrate inhibitor J. Nat. Gas Chem. 19(3), 323-326. DOI: 10.1016/S1003-9953(09)60060-8.[Crossref][WoS]
  • 21. Heidaryan, E., Moghadasi, J. & Salarabadi, A. (2010). A new and reliable model for predicting methane viscosity at high pressures and high temperatures. J. Nat. Gas Chem. 19 (5), 552-556. DOI: 10.1016/S1003-9953(09)60109-2.[WoS][Crossref]
  • 22. Heidaryan, E., Hatami, T., Rahimi, M. & Moghadasi, J. (2011). Viscosity of pure carbon dioxide at supercritical region: Measurement and correlation approach, J. Supercrit. Fluids. 56(2), 144-151. DOI: 10.1016/j.supfl u.2010.12.006.[WoS][Crossref]
  • 23. Heidaryan, E. & Moghadasi, J. (2012). A Laboratory Investigation into Carbon Dioxide Flooding by Focusing on the Viscosity and Swelling Factor Changes, Petrol. Sci. Technol. 30(14), 1441-1452, DOI: 10.1080/10916466.2010.482037.[WoS][Crossref]
  • 24. Mandal, A. & Laik, S. (2008). Effect of the Promoter on Gas Hydrate Formation and Dissociation. Energy & Fuels 22(4), 2527-2532. DOI:10.1021/ef800240n.[WoS][Crossref]
  • 25. Gayet, P., Dicharry, C., Marion, G., Graciaa, A., Lachaise, J. & Nesterov, A. (2005). Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter. Chem. Eng. Sci. 60(21),5751-5758. DOI:10.1016/j.ces.2005.04.069.[Crossref]
  • 26. Tohidi, B., Burgass, R.W., Danesh, A., Ostergaard, K.K. & Todd, A.C. (2000). Improving the Accuracy of Gas Hydrate Dissociation Point Measurements. Ann. N. Y. Acad. Sci. 912 (Gas hydrates: challenges for the future), 924-931. DOI: 10.1111/j.1749-6632.2000.tb06846.x. [Crossref]
  • 27. Gnanendran, N. & Amin, R. (2003). The effect of hydrotropes on gas hydrate formation. J. Petrol. Sci. Eng. 40 (1-2): 37-46. DOI: 10.1016/S0920-4105(03)00082-2.[Crossref]
  • 28. Kunz, O. & Wagner, W. (2012). The GERG-2008 Wide- Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004. J. Chem. Eng. Data. 57(11), 3032-3091. DOI: 10.1021/je300655b.[Crossref][WoS]
  • 29. Ameripour, S. & Barrufet, M. (2009). Improved Correlations Predict Hydrate Formation Pressures or Temperatures for Systems With or Without Inhibitors. J. Can. Petrol. Technol. 48(5), 45-50. DOI:10.2118/09-05-45.[Crossref]
  • 30. Makogon, Y.F. (1997). Hydrates of hydrocarbons. PennWell Publishing Co. Tulsa, OK. USA.
  • 31. Giavarini, C. & Maccioni, F. (2004). Self-preservation at low pressures of methane hydrate with various gas contents. Ind. Eng. Chem. Res. 43(20), 6616-6621. DOI:10.1021/ie040038a.[Crossref]
  • 32. Rovetto, L.J., Strobel, T.A., Koh, C.A. & Sloan, E.D.Jr. (2006). Is gas hydrate formation thermodynamically promoted by hydrotrope molecules? Fluid. Phase. Equilibr. 247(1-2), 84-89. DOI:10.1016/j.fl uid.2006.06.018.[Crossref]
  • 33. Srinivas, V., Rodley, G.A., Ravikumar, K., Robinson, W.T., Turnbull, M.M. & Balasubramanian, D. (1997). Molecular organisation in hydrotrope assemblies. Langmuir 13(12), 3235-3239. DOI:10.1021/la9609229. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0017
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.