Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 10 | 1 | 15-18

Article title

Modelling of the gas combustion process

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper reports on a procedure which leads to the assessment of the KG values without the need of determining the maximal rate of pressure rise by experiments. A simulation is proposed of the combustion process in its simplest form, i.e. one-dimensional propagation of the flame. Such simulation enables the burning velocity Su to be assessed. Knowing the Su values for different compositions of the flammable mixture makes it possible to determine the Su, max value. Once the correlation between Su,max and KG has been established, this will enable us to assign an appropriate value of KG to that of the maximal burning velocity. An example of such a correlation is given. It refers to flammable mixtures of a comparatively low burning velocity.

Publisher

Year

Volume

10

Issue

1

Pages

15-18

Physical description

Dates

published
1 - 1 - 2008
online
3 - 4 - 2008

Contributors

  • Institute of Inorganic Technology and Mineral Fertilizers, University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Institute of Inorganic Technology and Mineral Fertilizers, University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Institute of Inorganic Technology and Mineral Fertilizers, University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

References

  • Williams, F. A. (1985) Combustion Theory. The Benjamin Cummings Publishing Company, Inc., Menelo Park, California, USA.
  • PN-EN 13673-2:2005. Determination of the maximum explosion pressure and the maximum rate of pressure rise of gases and vapours - Part 2: Determination of the maximum pressure rise.
  • Andrews, G. E. & Bradley, D.(1972). Determination of burning velocities: A Critical Review, Comb. Flame, 18, 133 - 153.
  • Bradley, D. & Mitcheson, A. (1976) Mathematical solutions for explosions in spherical vessels, Comb. Flame, 26, 201 - 217.
  • CHEMKIN, PREMIX, A program for modeling steady, laminar one-dimensional premixed flames. Version 4.0.
  • Bartknecht, W.(1981) Explosions, Springer-Verlag.
  • Cashdollar, K. L., Zlochower, I. A., Green, G. M., Thomas, R. A. & Hertzberg, M. (2000) Flammability of methane, propane, and hydrogen gases, J. Loss Prev. Process Ind., 13, 327 - 340.
  • Mashuga, Ch.V. & Crowl, D. A. (2000) Problems with identifying a standard procedure for determining KG values for flammable vapours, J. Loss Prev. Process Ind. 13, 369 - 376.
  • Warnatz, J. (1981). The structure of laminar alkane, alkene, and acetylene flames, 18th Symp.(Int.) on Comb. (pp.369 - 381) The Comb. Inst., Pittsburgh.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-008-0004-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.